Понятие когерентности. Временная и пространственная когерентность

Когерентные волны – это колебания с постоянной разностью фаз. Разумеется, условие выполняется не в каждой точке пространства, лишь на отдельных участках. Очевидно, что для удовлетворения определению частоты колебаний также предвидятся равными. Прочие волны бывают когерентны лишь на некотором участке пространства, а дальше разность фаз меняется, и это определение использовать уже нельзя.

Обоснование применения

Когерентные волны считаются упрощением, не встречающимся на практике. Математическая абстракция помогает во многих отраслях науки: космос, термоядерные и астрофизические исследования, акустика, музыка, электроника и, конечно, оптика.

Для реальных приложений применяются упрощённые методы, в числе последних трёхволновая система, основы применимости кратко изложены ниже. Для анализа взаимодействия возможно задать, к примеру, гидродинамическую или кинетическую модель.

Решение уравнений для когерентных волн позволяет предсказать устойчивость систем, функционирующих с использованием плазмы. Теоретический подсчёт показывает, что иногда амплитуда результата за короткое время растёт бесконечно. Что означает создание взрывоопасной ситуации. Решая уравнения для когерентных волн, подбором условий удаётся избежать неприятных последствий.

Определения

Вначале введём ряд определений:

  • Монохроматической называется волна единственной частоты. Ширина её спектра равна нулю. На графике это единственная гармоника.
  • Спектр сигнала – графическое представление амплитуды слагающих гармоник, где по оси абсцисс (ось Х, горизонтальная) откладывается частота. Спектром синусоидального колебания (монохроматической волны) становится единственная спектринка (вертикальная чёрточка).
  • Преобразованиями Фурье (обратным и прямым) называют разложение сложного колебания на монохроматические гармоники и обратное сложение целого из разрозненных спектринок.
  • Волновой анализ цепей для сложных сигналов не проводится. Вместо этого происходит разложение на отдельные синусоидальные (монохроматические) гармоники, для каждой сравнительно просто составить формулы описания поведения. При расчёте на ЭВМ этого хватает для анализа любых ситуаций.
  • Спектр любого непериодического сигнала бесконечен. Границы его обрезаются до разумных пределов перед проведением анализа.
  • Дифракцией называется отклонение луча (волны) от прямолинейной траектории вследствие взаимодействия со средой распространения. К примеру, проявляется при преодолении фронтом щели в препятствии.
  • Интерференцией называется явление сложения волн. Из-за чего наблюдается весьма причудливая картина из чередующихся полос света и тени.
  • Рефракцией называется преломление хода волны на разделе двух сред с различными параметрами.

Понятие когерентности

Советская энциклопедия говорит, что волны одинаковой частоты неизменно когерентны. Это верно исключительно для отдельно взятых неподвижных точек пространства. Фаза определяет результат сложения колебаний. К примеру, противофазные волны одной амплитуды дают прямую линию. Такие колебания гасят друг друга. Самая большая амплитуда у синфазных волн (разность фаз равна нулю). На этом факте основан принцип действия лазеров, зеркальная и фокусирующая система пучков света, особенности получения излучения делают возможной передачу информации на колоссальные расстояния.

Согласно теории взаимодействия колебаний когерентные волны образуют интерференционную картину. У новичка возникает вопрос: свет лампочки не кажется полосатым. По простой причине, что излучение не одной частоты, а лежит в пределах отрезка спектра. И участок, причём, приличной ширины. Из-за неоднородности частот волны беспорядочные, не проявляют свои теоретически и экспериментально в лабораториях обоснованные и доказанные свойства.

Хорошей когерентностью обладает луч лазера. Его используют для связи на дальние расстояния при прямой видимости и прочих целей. Когерентные волны дальше распространяются в пространстве и на приёмнике подкрепляют друг друга. В пучке света разрозненной частоты эффекты способны вычитаться. Возможно подобрать условия, что излучение исходит от источника, но на приёмнике не зарегистрируется.

Обычный свет лампочки тоже работает не на полную мощность. Достичь КПД в 100% на современном этапе развития техники не представляется возможным. К примеру, газоразрядные лампы страдают сильной дисперсией частот. Что касается светодиодов, основатели концепции нанотехнологий обещали создать элементную базу для производства полупроводниковых лазеров, но напрасно. Значительная часть разработок засекречена и рядовому обывателю недоступна.

Лишь когерентные волны проявляют волновые качества. Действуют согласованно, как лучинки веника: по одной легко сломать, вместе взятые – выметают мусор. Волновые свойства – дифракция, интерференция и рефракция – характерны для всех колебаний. Просто зарегистрировать эффект сложнее из-за беспорядочности процесса.

Когерентные волны не демонстрируют дисперсии. Показывают одну частоту и одинаково отклоняются призмой. Все примеры волновых процессов в физике даются, как правило, для когерентных колебаний. На практике приходится учитывать присутствующую малую ширину спектра. Что накладывает особенности на процесс расчёта. Как зависит реальный результат от относительной когерентности волны – пытаются ответить многочисленные учебники и разрозненные издания с замысловатыми названиями! Единого ответа не существует, он сильно зависит от отдельно взятой ситуации.

Волновые пакеты

Для облегчения решения практической задачи можно ввести, к примеру, определение волнового пакета. Каждый из них разбивается дальше на мелкие части. И эти подразделы взаимодействуют когерентно между аналогичными частотами другого пакета. Подобный аналитический метод широко распространён в радиотехнике и электронике. В частности, понятие спектра изначально вводилось для того, чтобы дать в руки инженеров надёжный инструмент, позволяющий оценить поведение сложного сигнала в конкретных случаях. Оценивается малая толика воздействия каждого гармонического колебания на систему, потом конечный эффект находится их полным сложением.

Следовательно, при оценке реальных процессов, не являющихся даже близко когерентными, допустимо разбить объект анализа на простейшие составляющие, чтобы оценить результат процесса. Расчёт упрощается с применением вычислительной техники. Машинные эксперименты показывают достоверность формул для имеющейся ситуации.

На начальном этапе анализа полагают, что пакеты с малой шириной спектра возможно условно заменить гармоническими колебаниями и в дальнейшем пользоваться обратным и прямым преобразованием Фурье для оценки результата. Эксперименты показали, что разброс фаз между выбранными пакетами постепенно возрастает (колеблется с постепенным увеличением разброса). Но для трёх волн разница постепенно сглаживается, согласуясь с излагаемой теорией. Накладывается ряд ограничений:

  1. Пространство должно быть бесконечным и однородным (k-пространство).
  2. Амплитуда волны не затухает с увеличением дальности, но меняется с течением времени.

Доказано, что в такой среде каждой волне удаётся подобрать конечный спектр, что автоматически делает возможным машинный анализ, а при взаимодействии пакетов спектр результирующей волны уширяется. Колебания по сути когерентными не считаются, но описываются уравнением суперпозиции, представленном ниже. Где волновой вектор ω(k) определяется по дисперсионному уравнению; Еk признано амплитудой гармоники рассматриваемого пакета; k – волновое число; r – пространственная координата, для показателя решается представленное уравнение; t – время.

Время когерентности

В реальной ситуации разнородные пакеты когерентны лишь на отдельном интервале. А далее расхождение фаз становится слишком большим, чтобы применять описанное выше уравнение. Чтобы вывести условия возможности вычислений, вводится понятие времени когерентности.

Полагается, что в начальный момент фазы всех пакетов одинаковы. Выбранные элементарные доли волны когерентны. Тогда искомое время находится как отношение числа Пи к ширине спектра пакета. Если время превысило когерентное, в данном участке уже нельзя использовать формулу суперпозиции для сложения колебаний – фазы слишком сильно отличаются друг от друга. Волна уже не когерентна.

Пакет возможно рассматривать, словно он характеризуется случайной фазой. В этом случае взаимодействие волн идёт по отличающейся схеме. Тогда находятся фурье-компоненты по указанной формуле для дальнейших расчётов. Причём взятые для расчёта две прочие компоненты берутся из трёх пакетов. Это случай совпадения с теорией, упомянутый выше. Следовательно, уравнение показывает зависимость всех пакетов. Точнее – результата сложения.

Для получения наилучшего результата нужно, чтобы ширина спектра пакета не превышала числа Пи, делённого на время решения задачи суперпозиции когерентных волн. При расстройке частоты амплитуды гармоник начинают осциллировать, точный результат получить сложно. И наоборот, для двух когерентных колебаний формула сложения упрощается максимально. Амплитуда находится как квадратный корень из суммы исходных гармоник, возведённых в квадрат и сложенных с собственным удвоенным произведением, помноженным на косинус разности фаз. У когерентных величин угол равен нулю, результат, как уже указано выше, получается максимальным.

Наравне с временем и длиной когерентности используют термин «длина цуга», что является аналогом второго термина. Для солнечного света эта дистанция составляет один микрон. Спектр нашего светила крайне широкий, что объясняет настолько мизерную дистанцию, где излучение считается когерентным самому себе. Для сравнения, длина цуга газового разряда достигает 10 см (в 100000 раз больше), а у лазера излучение сохраняет свойства и на километровых расстояниях.

С радиоволнами намного проще. Кварцевые резонаторы позволяют достичь высокой когерентности волны, чем объясняются пятна уверенного приёма на местности, граничащие с зонами молчания. Аналогичное проявляется при изменении имеющейся картины с течением суток, движением облаков и прочими факторами. Изменяются условия распространения когерентной волны, и интерференционная суперпозиция оказывает влияние в полной мере. В радиодиапазоне на низких частотах длина когерентности может превышать поперечник Солнечной системы.

Условия сложения сильно зависят от формы фронта. Наиболее просто задача решается для плоской волны. В действительности фронт обычно является сферическим. Точки синфазности находятся на поверхности шара. В бесконечно удалённой от источника местности условие плоскости возможно принять за аксиому, и дальнейший расчёт вести согласно взятому постулату. Чем ниже частота, тем проще создать условия для выполнения расчёта. И наоборот, источники света со сферическим фронтом (вспомним Солнце) сложно подогнать под стройную теорию, написанную в учебниках.

Энциклопедический словарь, 1998 г.

когерентность

КОГЕРЕНТНОСТЬ (от лат. cohaerens - находящийся в связи) согласованное протекание во времени нескольких колебательных или волновых процессов. Если разность фаз 2 колебаний остается постоянной во времени или меняется по строго определенному закону, то колебания называются когерентными. Колебания, у которых разность фаз изменяется беспорядочно и быстро по сравнению с их периодом, называются некогерентными.

Когерентность

(от латинского cohaerens ≈ находящийся в связи), согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания называются когерентными, если разность их фаз остаётся постоянной во времени и при сложении колебаний определяет амплитуду суммарного колебания. Два гармонических (синусоидальных) колебания одной частоты всегда когерентны. Гармоническое колебание описывается выражением: х = A cos (2pvt + j), (

    где х ≈ колеблющаяся величина (например, смещение маятника от положения равновесия, напряжённость электрического и магнитного полей и т.д.). Частота гармонического колебания, его амплитуда А и фаза j постоянны во времени. При сложении двух гармонических колебаний с одинаковой частотой v, но разными амплитудами A1 и А2 и фазами j1 и j2, образуется гармоническое колебание той же частоты. Амплитуда результирующего колебания:

    может изменяться в пределах от A1 + А2 до А1 ≈ А2 в зависимости от разности фаз j1 ≈ j2 (). Интенсивность результирующего колебания, пропорциональная Ар2 также зависит от разности фаз.

    В действительности идеально гармонические колебания неосуществимы, так как в реальных колебательных процессах амплитуда, частота и фаза колебаний непрерывно хаотически изменяются во времени. Результирующая амплитуда Ар существенно зависит от того, как быстро изменяется разность фаз. Если эти изменения столь быстры, что не могут быть замечены прибором, то измерить можно только среднюю амплитуду результирующего колебания. При этом, т.к. среднее значение cos (j1≈j2) равно 0, средняя интенсивность суммарного колебания равна сумме средних интенсивностей исходных колебаний: ═и, таким образом, не зависит от их фаз. Исходные колебания являются некогерентными. Хаотические быстрые изменения амплитуды также нарушают К. .

    Если же фазы колебаний j1 и j2 изменяются, но их разность j1 ≈ j2 остается постоянной, то интенсивность суммарного колебания, как в случае идеально гармонических колебаний, определяется разностью фаз складываемых колебаний, то есть имеет место К. Если разность фаз двух колебаний изменяется очень медленно, то говорят, что колебания остаются когерентными в течение некоторого времени, пока их разность фаз не успела измениться на величину, сравнимую с p.

    Можно сравнить фазы одного и того же колебания в разные моменты времени t1 и t2, разделённые интервалом t. Если негармоничность колебания проявляется в беспорядочном, случайном изменении во времени его фазы, то при достаточно большом t изменение фазы колебания может превысить p. Это означает, что через время t гармоническое колебание «забывает» свою первоначальную фазу и становится некогерентным «само себе». Время t называется временем К. негармонического колебания, или продолжительностью гармонического цуга. По истечении одного гармонического цуга он как бы заменяется другим с той же частотой, но др. фазой.

    При распространении плоской монохроматической электромагнитной волны в однородной среде напряжённость электрического поля Е вдоль направления распространения этой волны ох в момент времени t равна:

    где l = сТ≈ длина волны, с ≈ скорость её распространения, Т ≈ период колебаний. Фаза колебаний в какой-нибудь определённой точке пространства сохраняется только в течение времени К. т. За это время волна распространится на расстояние сt и колебания Е в точках, удалённых друг от друга на расстояние сt, вдоль направления распространения волны, оказываются некогерентными. Расстояние, равное сt вдоль направления распространения плоской волны на котором случайные изменения фазы колебаний достигают величины, сравнимой с p, называют длиной К., или длиной цуга.

    Видимый солнечный свет, занимающий на шкале частот электромагнитных волн диапазон от 4Ч1014 до 8Ч1014гц, можно рассматривать как гармоническую волну с быстро меняющимися амплитудой, частотой и фазой. При этом длина цуга ~ 10≈4 см. Свет, излучаемый разреженным газом в виде узких спектральных линий более близок к монохроматическому. Фаза такого света практически не меняется на расстоянии 10 см. Длина цуга лазерного излучения может превышать километры. В диапазоне радиоволн существуют более монохроматические источники колебаний (см. Кварцевый генератор, Квантовые стандарты частоты), а длина волн l во много раз больше, чем для видимого света. Длина цуга радиоволн может значительно превышать размеры Солнечной системы.

    Всё сказанное справедливо для плоской волны. Однако идеально плоская волна так же неосуществима, как и идеально гармоническое колебание (см. Волны). В реальных волновых процессах амплитуды и фаза колебаний изменяются не только вдоль направления распространения волны, но и в плоскости, перпендикулярной этому направлению. Случайные изменения разности фаз в двух точках, расположенных в этой плоскости, увеличиваются с увеличением расстояния между ними. К. колебаний в этих точках ослабевает и на некотором расстоянии l, когда случайные изменения разности фаз становятся сравнимыми с p, исчезают. Для описания когерентных свойств волны, в плоскости, перпендикулярной направлению ее распространения, применяют термин пространственная К., в отличие от временной К., связанной со степенью монохроматичности волны. Все пространство, занимаемое волной, можно разбить на области, в каждой из которых волна сохраняет К. Объём такой области (объём К.) приблизительно равен произведению длины цуга сt на площадь круга диаметром / (размер пространственной К.).

    Нарушение пространственной К. связано с особенностями процессов излучения и формирования волн. Например, пространственная К. световой волны, излучаемой протяжённым нагретым телом, исчезает на расстоянии от его поверхности всего в несколько длин волн, т.к. разные части нагретого тела излучают независимо друг от друга (см. Спонтанное излучение). В результате вместо одной плоской волны источник излучает совокупность плоских волн, распространяющихся по всем возможным направлениям. По мере удаления от теплового источника (конечных размеров), волна все больше и больше приближается к плоской. Размер пространственной К. l растет пропорционально l ═≈ где R ≈ расстояние до источника, r ≈ размеры источника. Это позволяет наблюдать интерференцию света звёзд, несмотря на то, что они являются тепловыми источниками огромных размеров. Измеряя / для света от ближайших звёзд, удаётся определить их размеры r. Величину l/r называют углом К. С удалением от источника интенсивность света убывает как 1/R2. Поэтому с помощью нагретого тела нельзя получить интенсивное излучение, обладающее большой пространственной К.

    Световая волна, излучаемая лазером, формируется в результате согласованного вынужденного излучения света во всем объеме активного вещества. Поэтому пространственная К. света у выходного отверстия лазера сохраняется во всем поперечном сечении луча. Лазерное излучение обладает огромной пространственной К., т. е. высокой направленностью по сравнению с излучением нагретого тела. С помощью лазера удаётся получить свет, объём К. которого в 1017 раз превышает объём К. световой волны той же интенсивности, полученной от наиболее монохроматических нелазерных источников света.

    В оптике наиболее распространённым способом получения двух когерентных волн является расщепление волны, излучаемой одним немонохроматическим источником, на две волны, распространяющиеся по разным путям, но, в конце концов, встречающихся в одной точке, где и происходит их сложение (рис. 2). Если запаздывание одной волны по отношению к другой, связанное с разностью пройденных ими путей, меньше продолжительности цуга, то колебания в точке сложения будут когерентными и будет наблюдаться интерференция света. Когда разность путей двух волн приближается к длине цуга, К. лучей ослабевает. Колебания освещённости экрана уменьшаются, освещённость I стремится к постоянной величине, равной сумме интенсивностей двух волн, падающих на экран. В случае неточечного (протяжённого) теплового источника два луча, пришедшие в точки А и В, могут оказаться некогерентными из-за пространственной некогерентности излучаемой волны. В этом случае интерференция не наблюдается, так как интерференционные полосы от разных точек источника смещены относительно друг друга на расстояние, большее ширины полосы.

    Понятие К., возникшее первоначально в классической теории колебаний и волн, применяется также по отношению к объектам и процессам, описываемым квантовой механикой (атомные частицы, твёрдые тела и т.д.).

    Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957; Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Фабрикант В. А., Новое о когерентности, «Физика в школе», 1968, ╧ 1; Франсон М., Сланский С., Когерентность в оптике, пер. с франц., М., 1968; Мартинсен В., Шпиллер Е., Что такое когерентность, «Природа», 1968, ╧ 10.

    А. В. Францессон.

Википедия

Когерентность (физика)

Когере́нтность (от - «находящийся в связи ») - скоррелированность нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты.

Классический пример двух когерентных колебаний - это два синусоидальных колебания одинаковой частоты.

Радиус когерентности - расстояние, при смещении на которое вдоль псевдоволновой поверхности, случайное изменение фазы достигает значения порядка.

Процесс декогеренции - нарушение когерентности, вызываемое взаимодействием частиц с окружающей средой.

Когерентность (философская спекулятивная стратегия)

В мысленном эксперименте, предложенном итальянским теоретиком вероятностей Бруно де Финетти в порядке оправдания Байесовской вероятности, массив ставок является точно когерентным , если он не подвергает спорщика верному проигрышу вне зависимости от исходов событий, на которые он ставит, обеспечив его оппоненту разумный выбор.

Когерентность

Когере́нтность (от - «находящийся в связи »):

  • Когерентность нескольких колебательных или волновых процессов этих процессов во времени, проявляющаяся при их сложении.
  • Когерентность массива ставок - свойство массива ставок, заключающееся в том, что спорщик, сделавший ставки на некоторые исходы некоторых событий, никогда не проиграет спор вне зависимости от исходов этих событий.
  • Когерентность памяти - свойство компьютерных систем, заключающееся в том, что два или более процессора или ядра могут получить доступ к одной области памяти.

Примеры употребления слова когерентность в литературе.

Вне зависимости от плоскости поляризации излучения Призраков мы можем теперь подстроиться под любую и убедиться, что когерентность действительно существует и постоянна во времени.

Они также воспринимают фазу волны, но при этом сами обеспечивают когерентность , издавая сигналы через строго определенные промежутки времени.

Когерентность , но это такая когерентность, которая не допускает существования моей когерентности, когерентности мира и когерентности Бога.

Весь Состав Общего Числа Воплощений Сущности Высшего, равно как и весь Состав Общего Числа Представленных Воплощений Сущности Высшего, наряду с Составом Общего Числа Воображенных Воплощений Сущности Высшего, запечатлены в Чаше Накоплений Сущности Божественной Человека-Будды информационно-энергетическим голографическим способом когерентности Духа, ибо Он и есть Альфа-и-Омега -- Первый-и-Последний Единый Высший, Охватывающий в Творении Его всех Сущих с Творцом.

Внешние связи В РА-8000 имеются средства эффективного поддержания когерентности кэша в многопроцессорных системах.

Запечатления в Тканях Одежд Сарасвати происходят Силою Сущности Божественной Человека -- информационно-энергетическим голографическим способом, то есть когерентностью психокоррелятивных квантовых полей, оставляющих голографический информационно-энергетический код Со-Бытия Человека, как живую Память в Вечной Неизменной Форме Души Творения.

Каждый Человек имеет свой индивидуальный Состав Общего Числа Воплощений Сущности Высшего, и этот Состав запечатлен в Чаше Человека информационно-энергетическим голографическим способом -- высокой когерентностью излучений психокоррелятивных квантовых полей, что генерируются Сущностью Божественной Человека в процессе его Образования Высшим.

Сущности Божественной Человека, как результат Мышления Образами Высшего, произрождаются мириады элементарных частиц Материи, которые есть сфокусированные высокой когерентностью Духа в Линзе плотности кривизны Пространства Образы общей картины голограммы Происходящего в Сарасвати из чувств.

Рисунок 5 -- Образование Тероидсфера Наития созданием высокой плотности Кривизны Пространства когерентностью Духа.

Индивидуальные электроны, наблюдаемые в конкретном физическом эксперименте, суть, по мысли Цеха, результат разрушения измерительным устройством когерентности единого электрон-- позитронного поля.

Процессы самоорганизации общественного сознания подчиняются общим закономерностям становления: когерентности , связности событий возникновения тех или иных общественных стереотипов и т.

Рассмотрим волну, распространяющуюся в пространстве. Когерентность - это мера корреляции между ее фазами, измеренными в различных точках. Когерентность волны зависит от характеристик ее источника.

Два типа когерентности

Когда описывают когерентность световых волн, различают два ее типа - временную и пространственную.

Когерентность относится к способности света производить Если две световые волны сведены вместе, и они не создают областей повышенной и уменьшенной яркости, они называются некогерентными. Если они производят «идеальную» интерференционную картину (в смысле существования областей полной деструктивной интерференции), то они являются полностью когерентными. Если две волны создают «менее совершенную» картину, то считается, что они частично когерентны.

Интерферометр Майкельсона

Когерентность - это явление, которое лучше всего объяснить с помощью эксперимента.

В интерферометре Майкельсона свет от источника S (который может быть любым: солнцем, лазером или звездами) направлен на полупрозрачное зеркало M 0 , которое отражает 50 % света в направлении зеркала M 1 и пропускает 50 % в направлении зеркала M 2 . Луч отражается от каждого из зеркал, возвращается к M 0 , и равные части света, отраженные от М 1 и М 2, объединяются и проецируются на экран B. Прибор можно настроить путем изменения расстояния от зеркала M 1 до светоделителя.

Интерферометр Майкельсона, по существу, смешивает луч с задержанной во времени его собственной версией. Свет, который проходит по пути к зеркалу M 1 должен пройти расстояние на 2d больше, чем луч, который движется к зеркалу M 2 .

Длина и время когерентности

Что наблюдается на экране? При d = 0 видно множество очень четких интерференционных полос. Когда d увеличивается, полосы становится менее выраженными: темные участки становятся ярче, а светлые - тусклее. Наконец, при очень больших d, превышающих некоторое критическое значение D, светлые и темные кольца исчезают полностью, оставляя лишь размытое пятно.

Очевидно, что световое поле не может интерферировать с задержанной во времени версией самого себя, если временная задержка достаточно велика. Расстояние 2D - это длина когерентности: интерференционные эффекты заметны, только когда разница в пути меньше этого расстояния. Данную величину можно преобразовать во время t c делением ее на с: t c = 2D / с.

Измеряет временную когерентность световой волны: ее способность интерферировать с задержанной версией самой себя. У хорошо стабилизированного лазера t c =10 -4 с, l c = 30 км; у фильтрованного теплового света t c =10 -8 с, l c = 3 м.

Когерентность и время

Временная когерентность - это мера корреляции между фазами световой волны в различных точках вдоль направления распространения.

Предположим, источник излучает волны длиной λ и λ ± Δλ, которые в какой-то момент в пространстве будут интерферировать на расстоянии l c = λ 2 / (2πΔλ). Здесь l c - длина когерентности.

Фаза волны, распространяющейся в направлении х, задается как ф = kx - ωt. Если рассмотреть рисунок волн в пространстве в момент времени t на расстоянии l c , разность фаз между двумя волнами с векторами k 1 и k 2 , которые находятся в фазе при х = 0, равна Δφ = l c (k 1 - k 2). Когда Δφ = 1, или Δφ ~ 60°, свет больше не является когерентным. Интерференция и дифракция оказывают значительное влияние на контраст.

Таким образом:

  • 1 = l c (k 1 - k 2) = l c (2π / λ - 2π / (λ + Δλ));
  • l c (λ + Δλ - λ) / (λ (λ + Δλ)) ~ l c Δλ / λ 2 = 1/2π;
  • l c = λ 2 / (2πΔλ).

Волна проходит через пространство со скоростью с.

Время когерентности t c = l c / с. Так как λf = с, то Δf / f = Δω / ω = Δλ / λ. Мы можем написать

  • l c = λ 2 / (2πΔλ) = λf / (2πΔf) = с / Δω;
  • t c = 1 / Δω.

Если известна или частота распространения источника света, можно вычислить l c и t c . Невозможно наблюдать интерференционную картину, полученную путем деления амплитуды, такую как тонкопленочная интерференция, если оптическая разность хода значительно превышает l c .

Временная когерентность говорит о монохромности источника.

Когерентность и пространство

Пространственная когерентность - это мера корреляции между фазами световой волны в различных точках поперечно по отношению к направлению распространения.

При расстоянии L от теплового монохроматического (линейного) источника, линейные размеры которого порядка δ, две щели, расположенные на расстоянии, превышающем d c = 0,16λL / δ, больше не производят узнаваемую интерференционную картину. πd c 2 / 4 является площадью когерентности источника.

Если в момент времени t посмотреть на источник шириной δ, расположенный перпендикулярно расстоянию L от экрана, то на экране можно увидеть две точки (P1 и P2), разделенные расстоянием d. Электрическое поле в P1 и P2 представляет собой суперпозицию электрических полей волн, испускаемых всеми точками источника, излучение которых не связано между собой. Для того чтобы покидающие P1 и P2, создавали узнаваемую интерференционную картину, суперпозиции в P1 и P2 должны находиться в фазе.

Условие когерентности

Световые волны, излучаемые двумя краями источника, в некоторый момент времени t обладают определенной разностью фаз прямо в центре между двумя точками. Луч, идущий от левого края δ до точки P2 должен пройти на d(sinθ)/2 дальше, чем луч, направляющийся к центру. Траектория луча, идущего от правого края δ до точки P2, проходит путь на d(sinθ)/2 меньше. Разность пройденного пути для двух лучей равна d·sinθ и представляет разность фаз Δф" = 2πd·sinθ / λ. Для расстояния от P1 до P2 вдоль фронта волны мы получаем Δφ = 2Δφ"= 4πd·sinθ / λ. Волны, испускаемые двумя краями источника, находятся в фазе с P1 в момент времени t и не совпадают по фазе на расстоянии 4πdsinθ/λ в Р2. Так как sinθ ~ δ / (2L), то Δφ = 2πdδ / (Lλ). Когда Δφ = 1 или Δφ ~ 60°, свет больше не считается когерентным.

Δφ = 1 -> d = Lλ / (2πδ) = 0,16 Lλ / δ.

Пространственная когерентность говорит об однородности фазы волнового фронта.

Лампа накаливания является примером некогерентного источника света.

Когерентный свет можно получить от источника некогерентного излучения, если отбросить большую часть излучения. В первую очередь производится пространственная фильтрация для повышения пространственной когерентности, а затем спектральная фильтрация для увеличения временной когерентности.

Ряды Фурье

Синусоидальная плоская волна абсолютно когерентна в пространстве и времени, а ее длина, время и площадь когерентности бесконечны. Все реальные волны являются волновыми импульсами, длящимися в течение конечного интервала времени и имеющими конечный перпендикуляр к их направлению распространения. Математически они описываются непериодическими функциями. Для нахождения частот, присутствующих в волновых импульсах для определения Δω и длины когерентности необходимо провести анализ непериодических функций.

Согласно анализу Фурье, произвольную периодическую волну можно рассматривать как суперпозицию синусоидальных волн. Синтез Фурье означает, что наложение множества синусоидальных волн позволяет получить произвольную периодическую форму волны.

Связь со статистикой

Теорию когерентности можно рассматривать как связь физики с другими науками, так как она является результатом слияния электромагнитной теории и статистики, так же как статистическая механика является объединением механики со статистикой. Теория используется для количественного определения и характеристики влияний случайных флуктуаций на поведение световых полей.

Обычно невозможно измерить флуктуации волнового поля непосредственно. Индивидуальные «подъемы и падения» видимого света нельзя обнаружить непосредственно или даже имея сложные приборы: его частота составляет порядка 10 15 колебаний в секунду. Можно измерить только усредненные показатели.

Применение когерентности

Связь физики с другими науками на примере когерентности можно проследить в ряде приложений. Частично когерентные поля менее подвержены воздействию атмосферной турбулентности, что делает их полезными для лазерной связи. Также они применяются при исследовании лазерно-индуцированных реакций термоядерного синтеза: уменьшение эффекта интерференции приводит к «плавному» действию луча на термоядерную мишень. Когерентность используется, в частности, для определения размера звезд и выделения двойных звездных систем.

Когерентность световых волн играет важную роль в изучении квантовых, а также классических полей. В 2005 году Рой Глаубер стал одним из лауреатов Нобелевской премии по физике за вклад в развитие квантовой теории оптической когерентности.

КОГЕРЕНТНОСТЬ (от лат. cohaerentio – связь, сцепление) – согласованное протекание в пространстве и во времени нескольких колебательных или волновых процессов, при котором разность их фаз остается постоянной. Это означает, что волны (звук , свет , волны на поверхности воды и пр.) распространяются синхронно, отставая одна от другой на вполне определенную величину. При сложении когерентных колебаний возникает интерференция ; амплитуду суммарных колебаний определяет разность фаз.

Гармонические колебания описывает выражение

A (t ) = A 0 cos(w t + j ),

где A 0 – начальная амплитуда колебания, A (t ) – амплитуда в момент времени t , w – частота колебания, j – его фаза.

Колебания когерентны, если их фазы j 1, j 2 ... меняются беспорядочно, но их разность Dj = j 1 – j 2 ... остается постоянной. Если же разность фаз меняется, колебания остаются когерентными, пока она по величине не станет сравнима с p .

Распространяясь от источника колебаний, волна через какое-то время t может «забыть» первоначальное значение своей фазы и стать некогерентной самой себе. Изменение фазы обычно происходит постепенно, и время t 0, в течение которого величина Dj остается меньше p , называется временнóй когерентностью. Ее величина непосредственно связана с надежностью источника колебаний: чем стабильнее он работает, тем больше временнáя когерентность колебания.

За время t 0 волна, двигаясь со скоростью с , проходит расстояние l = t 0c , которое называется длиной когерентности,или длинойцуга, то есть отрезка волны, имеющего неизменную фазу. В реальной плоской волне фаза колебаний меняется не только вдоль направления распространения волны, но и в плоскости, перпендикулярной ему. В этом случае говорят о пространственной когерентности волны.

Первое определение когерентности дал Томас Юнг в 1801 при описании законов интерференции света, проходящего через две щели: «интерферируют две части одного и того же света». Суть этого определения состоит в следующем.

Обычные источники оптического излучения состоят из множества атомов, ионов или молекул, самопроизвольно испускающих фотоны. Каждый акт испускания длится 10 –5 – 10 –8 секунды; следуют они беспорядочно и со случайно распределенными фазами как в пространстве, так и во времени. Такое излучение некогерентно, на освещенном им экране наблюдается усредненная сумма всех колебаний, а картина интерференции отсутствует. Поэтому для получения интерференции от обычного источника света его луч раздваивают при помощи пары щелей, бипризмы или зеркал, поставленных под небольшим углом одно к другому, а затем сводят вместе обе части. Фактически здесь речь идет о согласованности, когерентности двух лучей одного акта излучения, происходящего случайным образом.

Когерентность лазерного излучения имеет другую природу. Атомы (ионы, молекулы) активного вещества лазера испускают вынужденное излучение, вызванное пролетом постороннего фотона, «в такт», с одинаковыми фазами, равными фазе первичного, вынуждающего излучения (см . ЛАЗЕР).

В наиболее широкой трактовке под когерентностью сегодня понимают совместное протекание двух или нескольких случайных процессов в квантовой механике, акустике, радиофизике и пр.

Сергей Транковсий

Фазовая когерентность

Экспериментальное подтверждение (14). Из этого уравнения следует, то можно увеличить, либо увеличив амплитуду компонента B i , либо увеличив продолжительность импульса . В экспериментах Фриболина с образцом H 2 O увеличивали с интервалом 1 мкс, а B i выдерживали постоянной. Из полученных результатов следует, что максимум амплитуды соответствует

Что касается заселенностей энергетических уровней, то при ситуация обращается и на верхнем энергетическом уровне ядер будет больше, чем на нижнем.

При имеем более сложную ситуацию, т.к. M 2 = 0 и оба зеемановских уровня заселены равным образом. Этот случай отличается от насыщения, т.к. в данной ситуации у нас M y" имеется, а при насыщении - нет. Появление поперечной намагниченности в данном случае объясняется тем, что под влиянием B 1 ядерные диполи прецессируют вокруг двойного конуса не равномерно, а образуя "редкие" и "плотные" фракции, прецессирующие "по фазе". Это явление называется "фазовой когерентностью.