Интегрирование рациональных функций методом разложения. Примеры интегрирования рациональных функций (дробей)

«Математик так же, как художник или поэт, создает узоры. И если его узоры более устойчивы, то лишь потому, что они составлены из идей... Узоры математика так же, как узоры художника или поэта, должны быть прекрасны; идеи так же, как цвета или слова, должны соответствовать друг другу. Красота есть первое требование: в мире нет места для некрасивой математики ».

Г.Х.Харди

В первой главе отмечалось, что существуют первообразные довольно простых функций, которые уже нельзя выразить через элементарные функции. В связи с этим, огромное практическое значение приобретают те классы функций, о которых можно точно сказать, что их первообразные – элементарные функции. К такому классу функций относятся рациональные функции , представляющие собой отношение двух алгебраических многочленов. К интегрированию рациональных дробей приводят многие задачи. Поэтому очень важно уметь интегрировать такие функции.

2.1.1. Дробно-рациональные функции

Рациональной дробью (или дробно-рациональной функцией )называется отношение двух алгебраических многочленов:

где и – многочлены.

Напомним, что многочленом (полиномом , целой рациональной функцией ) n -й степени называется функция вида

где – действительные числа. Например,

– многочлен первой степени;

– многочлен четвертой степени и т.д.

Рациональная дробь (2.1.1) называется правильной , если степень ниже степени , т.е. n <m , в противном случае дробь называется неправильной .

Любую неправильную дробь можно представить в виде суммы многочлена (целой части) и правильной дроби (дробной части). Выделение целой и дробной частей неправильной дроби можно производить по правилу деления многочленов «уголком».

Пример 2.1.1. Выделить целую и дробную части следующих неправильных рациональных дробей:

а) , б) .

Решение . а) Используя алгоритм деления «уголком», получаем

Таким образом, получаем

.

б) Здесь также используем алгоритм деления «уголком»:

В результате, получаем

.

Подведём итоги. Неопределённый интеграл от рациональной дроби в общем случае можно представить суммой интегралов от многочлена и от правильной рациональной дроби. Нахождение первообразных от многочленов не представляет трудностей. Поэтому в дальнейшем будем рассматривать в основном правильные рациональные дроби.

2.1.2. Простейшие рациональные дроби и их интегрирование

Среди правильных рациональных дробей выделяют четыре типа, которые относят кпростейшим (элементарным) рациональным дробям:

3) ,

4) ,

где – целое число, , т.е. квадратный трёхчлен не имеет действительных корней.

Интегрирование простейших дробей 1-го и 2-го типа не представляет больших трудностей:

, (2.1.3)

. (2.1.4)

Рассмотрим теперь интегрирование простейших дробей 3-го типа, а дроби 4-го типа рассматривать не будем.

Начнём с интегралов вида

.

Данный интеграл обычно вычисляют путем выделения полного квадрата в знаменателе. В результате получается табличный интеграл следующего вида

или .

Пример 2.1.2. Найти интегралы:

а) , б) .

Решение . а) Выделим из квадратного трёхчлена полный квадрат:

Отсюда находим

б) Выделив из квадратного трёхчлена полный квадрат, получаем:

Таким образом,

.

Для нахождения интеграла

можно выделить в числителе производную знаменателя и разложить интеграл на сумму двух интегралов: первый из них подстановкой сводится к виду

,

а второй – к рассмотренному выше.

Пример 2.1.3. Найти интегралы:

.

Решение . Заметим, что . Выделим в числителе производную знаменателя:

Первый интеграл вычисляется при помощи подстановки :

Во втором интеграле выделим полный квадрат в знаменателе

Окончательно, получаем

2.1.3. Разложение правильной рациональный дроби
на сумму простейших дробей

Любую правильную рациональную дробь можно представить единственным образом в виде суммы простейших дробей. Для этого знаменатель нужно разложить на множители. Из высшей алгебры известно, что каждый многочлен с действительными коэффициентами

ТЕМА: Интегрирование рациональных дробей.

Внимание! При изучении одного из основных приемов интегрирования: интегрирования рациональных дробей – требуется для проведения строгих доказательств рассматривать многочлены в комплексной области. Поэтому необходимо изучить предварительно некоторые свойства комплексных чисел и операций над ними.

Интегрирование простейших рациональных дробей.

Если P (z ) и Q (z ) – многочлены в комплексной области, то - рациональная дробь. Она называется правильной , если степень P (z ) меньше степени Q (z ) , и неправильной , если степень Р не меньше степени Q .

Любую неправильную дробь можно представить в виде: ,

P(z) = Q(z) S(z) + R(z),

a R (z ) – многочлен, степень которого меньше степени Q (z ).

Таким образом, интегрирование рациональных дробей сводится к интегрированию многочленов, то есть степенных функций, и правильных дробей, так как является правильной дробью.

Определение 5. Простейшими (или элементарными) дробями называются дроби следующих видов:

1) , 2) , 3) , 4) .

Выясним, каким образом они интегрируются.

3) (изучен ранее).

Теорема 5. Всякую правильную дробь можно представить в виде суммы простейших дробей (без доказательства).

Следствие 1. Если - правильная рациональная дробь, и если среди корней многочлена будут только простые действительные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 1-го типа:

Пример 1.

Следствие 2. Если - правильная рациональная дробь, и если среди корней многочлена будут только кратные действительные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 1-го и 2-го типов:

Пример 2.

Следствие 3. Если - правильная рациональная дробь, и если среди корней многочлена будут только простые комплексно - сопряженные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 3-го типа:

Пример 3.

Следствие 4. Если - правильная рациональная дробь, и если среди корней многочлена будут только кратные комплексно - сопряженные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 3-го и 4-го типов:

Для определения неизвестных коэффициентов в приведенных разложениях поступают следующим образом. Левую и правую часть разложения , содержащего неизвестные коэффициенты, умножают на Получается равенство двух многочленов. Из него получают уравнения на искомые коэффициенты, используя, что:

1. равенство справедливо при любых значениях Х (метод частных значений). В этом случае получается сколько угодно уравнений, любые m из которых позволяют найти неизвестные коэффициенты.

2. совпадают коэффициенты при одинаковых степенях Х (метод неопределенных коэффициентов). В этом случае получается система m – уравнений с m – неизвестными, из которых находят неизвестные коэффициенты.

3. комбинированный метод.

Пример 5. Разложить дробь на простейшие.

Решение:

Найдем коэффициенты А и В.

1 способ - метод частных значений:

2 способ – метод неопределенных коэффициентов:

Ответ:

Интегрирование рациональных дробей.

Теорема 6. Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором ее знаменатель не равен нулю, существует и выражается через элементарные функции, а именно рациональные дроби, логарифмы и арктангенсы.

Доказательство.

Представим рациональную дробь в виде: . При этом последнее слагаемое является правильной дробью, и по теореме 5 ее можно представить в виде линейной комбинации простейших дробей. Таким образом, интегрирование рациональной дроби сводится к интегрированию многочлена S (x ) и простейших дробей, первообразные которых, как было показано, имеют вид, указанный в теореме.

Замечание. Основную трудность при этом составляет разложение знаменателя на множители, то есть поиск всех его корней.

Пример 1. Найти интеграл

Интегрирование рациональных функций Дробно – рациональная функция Простейшие рациональные дроби Разложение рациональной дроби на простейшие дроби Интегрирование простейших дробей Общее правило интегрирования рациональных дробей

многочлен степени n. Дробно – рациональная функция Дробно – рациональной функцией называется функция, равная отношению двух многочленов: Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, то есть m < n , в противном случае дробь называется неправильной. многочлен степени m Всякую неправильную рациональную дробь можно, путем деления числителя на знаменатель, представить в виде суммы многочлена L(x) и правильной рациональной дроби:)()()(x. Q x. P xf n m)()()(x. Q x. R x. L x. Q x. P

Дробно – рациональная функция Привести неправильную дробь к правильному виду: 2 95 4 x xx 95 4 xx 2 x 3 x 34 2 xx 952 3 xx 2 2 x 23 42 xx 954 2 xx x 4 xx 84 2 93 x 3 63 x 15 2 95 4 x xx 342 23 xxx 2 15 x

Простейшие рациональные дроби Правильные рациональные дроби вида: Называются простейшими рациональными дробями типов. ax A); 2(Nkk ax A k)04(2 2 qp qpxx NMx); 2; 04(2 2 Nkkqp qpxx NMx k V V,

Разложение рациональной дроби на простейшие дроби Теорема: Всякую правильную рациональную дробь, знаменатель которой разложен на множители: можно представить, притом единственным образом в виде суммы простейших дробей: s k qxpxxxxxx. Q)()()(22 2 11 2 21)()(x. Q x. P 1 xx A k k xx B)()(2 2 2 1 11 2 qxpx DCx 2 22 22 2 11)(qxpx Nx. M s ss qxpx Nx. M)(

Разложение рациональной дроби на простейшие дроби Поясним формулировку теоремы на следующих примерах: Для нахождения неопределенных коэффициентов A, B, C, D … применяют два метода: метод сравнивания коэффициентов и метод частных значений переменной. Первый метод рассмотрим на примере. 3 2)3)(2(4 xx x 2 x A 3 3 2 21)3()3(3 x B x B 1 2 x DCx 22 22 2 11)1(1 xx Nx. M)1(3 22 3 xx x 2 21 x A 22 2)1)(4(987 xxx xx 4 x

Разложение рациональной дроби на простейшие дроби Представить дробь в виде суммы простейших дробей: Приведем простейшие дроби к общему знаменателю Приравняем числители получившейся и исходной дробей Приравняем коэффициенты при одинаковых степенях х)52)(1(332 2 2 xxx xx 1 x A 52 2 xx CBx)52)(1()1)(()52(2 2 xxx x. CBxxx. A 33252 222 xx. CBx. Cx. Bx. AAx. Ax 35 32 2 0 1 2 CAx BAx 2 3 1 C B A 52 23 1 1 2 xx x x

Интегрирование простейших дробей Найдем интегралы от простейших рациональных дробей: Интегрирование дроби 3 типа рассмотрим на примере. dx ax A k dx qpxx NMx 2 ax axd A)(Cax. Aln)(axdax. A k C k ax. A k

Интегрирование простейших дробейdx xx x 102 13 2 dx xx x 9)12(13 2 dx x x 9)1(13 2 dtdx tx tx 1 1 dt t t 9 1)1(3 2 dt t t 9 23 2 9 322 t dtt 9 9 2 3 2 2 t td 33 2 t arctg. C t arctgt 33 2 9 ln 2 32 C x arctgxx 3 1 3 2 102 ln

Интегрирование простейших дробей Интеграл данного типа с помощью подстановки: приводится к сумме двух интегралов: Первый интеграл вычисляется методом внесения t под знак дифференциала. Второй интеграл вычисляется с помощью рекуррентной формулы: dx qpxx NMx k 2 V t p x 2 kk at dt N at dtt M 22122 1221222))(1(222 321 kkkk atk t k k aat dt

Интегрирование простейших дробей a = 1; k = 3 323)1(t dt tarctg t dt 1 21)1)(12(2222 322 1 21222 t t t dt)1(22 1 2 t t tarctg 2223)1)(13(2232 332 t t C t t tarctg 222)1(4)1(

Общее правило интегрирования рациональных дробей Если дробь неправильная, то представить ее в виде суммы многочлена и правильной дроби. Разложив знаменатель правильной рациональной дроби на множители, представить ее в виде суммы простейших дробей с неопределенными коэффициентами Найти неопределенные коэффициенты методом сравнения коэффициентов или методом частных значений переменной. Проинтегрировать многочлен и полученную сумму простейших дробей.

Пример Приведем дробь к правильному виду. dx xxx 23 35 2 442 35 xxxxxx 23 2 2 x 345 2 xxx 442 34 xxx x 2 234 242 xxx 4425 23 xxx xxx 23 35 2 442 xxx xx xx 23 2 2 2 48 52 5 xxx 5105 23 48 2 xx

Пример Разложим знаменатель правильной дроби на множители Представим дробь в виде суммы простейших дробей Найдем неопределенные коэффициенты методом частных значений переменной xxx xx 23 2 2 48 2 2)1(48 xx xx 2)1(1 x C x B x A 2 2)1()1(xx Cxx. Bxx. A 48)1()1(22 xx. Cxx. Bxx. A 5241 31 40 CBAx Cx Ax 3 12 4 C B A xxx xx 23 2 2 48 2)1(3 1 124 xxx

Пример dx xx 2 2)1(3 1 124 52 2 2)1(3 1 12452 x dx dxxdxdxx C x xxxx x 1 3 1 ln 12 ln

2., 5.
,

3.
, 6.
.

В интегралах 1-3 качествеu принимают. Тогда, послеn -кратного применения формулы (19) придем к одному из табличных интегралов

,
,
.

В интегралах 4-6 при дифференцировании упроститься трансцендентный множитель
,
или
, который следует принять заu .

Вычислить следующие интегралы.

Пример 7.

Пример 8.

Приведение интегралов к самому себе

Если подынтегральная функция
имеет вид:

,
,
и так далее,

то после двукратного интегрирования по частям получим выражение, содержащее исходный интеграл :

,

где
- некоторая постоянная.

Разрешая полученное уравнение относительно , получим формулу для вычисления исходного интеграла:

.

Этот случай применения метода интегрирования по частям называется «приведение интеграла к самому себе ».

Пример 9. Вычислить интеграл
.

В правой части стоит исходный интеграл . Перенеся его в левую часть, получим:

.

Пример 10. Вычислить интеграл
.

4.5. Интегрирование простейших правильных рациональных дробей

Определение. Простейшими правильными дробями I , II и III типов называются следующие дроби:

I . ;

II .
; (
- целое положительное число);

III .
; (корни знаменателя комплексные, то есть:
.

Рассмотрим интегралы от простейших дробей.

I .
; (20)

II . ; (21)

III .
;

Преобразуем числитель дроби таким образом, чтобы выделить в числителе слагаемое
, равное производной знаменателя.

Рассмотрим первый из двух полученных интегралов и сделаем в нем замену:

Во втором интеграле дополним знаменатель до полного квадрата:

Окончательно, интеграл от дроби третьего типа равен:

=
+
. (22)

Таким образом, интеграл от простейших дробей I-го типа выражается через логарифмы,II–го типа – через рациональные функции,III-го типа – через логарифмы и арктангенсы.

4.6.Интегрирование дробно-рациональных функций

Одним из классов функций, которые имеют интеграл, выраженный через элементарные функции, является класс алгебраических рациональных функций, то есть функций, получающихся в результате конечного числа алгебраических операций над аргументом.

Всякая рациональная функция
может быть представлена в виде отношения двух многочленов
и
:

. (23)

Будем предполагать, что многочлены не имеют общих корней.

Дробь вида (23) называется правильной , если степень числителя меньше степени знаменателя, то есть,m < n . В противном случае –неправильной .

Если дробь неправильная, то, разделив числитель на знаменатель (по правилу деления многочленов), представим дробь в виде суммы многочлена и правильной дроби:

, (24)

где
- многочлен,- правильная дробь, причем степень многочлена
- не выше степени (n -1).

Пример.

Так как интегрирование многочлена сводится к сумме табличных интегралов от степенной функции, то основная трудность при интегрировании рациональных дробей заключается в интегрировании правильных рациональных дробей.

В алгебре доказано, что всякая правильная дробь разлагается на сумму рассмотренных вышепростейших дробей, вид которых определяется корнями знаменателя
.

Рассмотрим три частных случая. Здесь и далее будем считать, что коэффициент при старшей степени знаменателя
равен единице=1, то есть
многочлен приведенный .

Случай 1. Корни знаменателя, то есть, корни
уравнения
=0, действительны и различны. Тогда знаменатель представим в виде произведения линейных множителей:

а правильная дробь разлагается на простейшие дроби I-готипа:

, (26)

где
– некоторые постоянные числа, которые находятся методом неопределенных коэффициентов.

Для этого необходимо:

1. Привести правую часть разложения (26) к общему знаменателю.

2. Приравнять коэффициенты при одинаковых степенях тождественных многочленов, стоящих в числителе левой и правой частей. Получим систему линейных уравнений для определения
.

3. Решить полученную систему и найти неопределенные коэффициенты
.

Тогда интеграл дробно-рациональной функции (26) будет равен сумме интегралов от простейших дробей I-готипа, вычисляемых по формуле (20).

Пример. Вычислить интеграл
.

Решение. Разложим знаменатель на множители, используя теорему Виета:

Тогда, подынтегральная функция разлагается на сумму простейших дробей:

.

х :

Запишем систему трех уравнений для нахождения
х в левой и правой частях:

.

Укажем более простой способ нахождения неопределенных коэффициентов, называемый методом частных значений .

Полагая в равенстве (27)
получим
, откуда
. Полагая
получим
. Наконец, полагая
получим
.

.

Случай 2. Корня знаменателя
действительны,но среди них есть кратные (равные) корни. Тогда знаменатель представим в виде произведения линейных множителей, входящих в произведение в той степени, какова кратность соответствующего корня:

где
.

Правильная дробь будет разлагаться сумму дробейI–го иII-го типов. Пусть, например,- корень знаменателя кратностиk , а все остальные (n - k ) корней различны.

Тогда разложение будет иметь вид:

Аналогично, если существуют другие кратные корни. Для некратных корней в разложение (28) входят простейшие дроби первого типа.

Пример. Вычислить интеграл
.

Решение. Представим дробь в виде суммы простейших дробей первого и второго рода с неопределенными коэффициентами:

.

Приведем правую часть к общему знаменателю и приравняем многочлены, стоящие в числителях левой и правой части:

В правой части приведем подобные при одинаковых степенях х :

Запишем систему четырех уравнений для нахождения
и. Для этого приравняем коэффициенты при одинаковых степеняхх в левой и правой части

.

Случай 3. Среди корней знаменателя
есть комплексные однократные корни. То есть, в разложение знаменателя входят множители второй степени
, не разложимые на действительные линейные множители, причем они не повторяются.

Тогда в разложении дроби каждому такому множителю будет соответствовать простейшая дробь IIIтипа. Линейным множителям соответствуют простейшие дробиI–го иII-го типов.

Пример. Вычислить интеграл
.

Решение.
.

.

.

Здесь мы приводим подробные решения трех примеров интегрирования следующих рациональных дробей:
, , .

Пример 1

Вычислить интеграл:
.

Решение

Здесь под знаком интеграла стоит рациональная функция, поскольку подынтегральное выражение является дробью из многочленов. Степень многочлена знаменателя (3 ) меньше степени многочлена числителя (4 ). Поэтому, вначале необходимо выделить целую часть дроби.

1. Выделим целую часть дроби. Делим x 4 на x 3 - 6 x 2 + 11 x - 6 :

Отсюда
.

2. Разложим знаменатель дроби на множители. Для этого нужно решить кубическое уравнение:
.
6
1, 2, 3, 6, -1, -2, -3, -6 .
Подставим x = 1 :
.

1 . Делим на x - 1 :

Отсюда
.
Решаем квадратное уравнение .
.
Корни уравнения: , .
Тогда
.

3. Разложим дробь на простейшие.

.

Итак, мы нашли:
.
Интегрируем.

Ответ

Пример 2

Вычислить интеграл:
.

Решение

Здесь в числителе дроби - многочлен нулевой степени (1 = x 0 ). В знаменателе - многочлен третьей степени. Поскольку 0 < 3 , то дробь правильная. Разложим ее на простейшие дроби.

1. Разложим знаменатель дроби на множители. Для этого нужно решить уравнение третьей степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 3 (члена без x ). То есть целый корень может быть одним из чисел:
1, 3, -1, -3 .
Подставим x = 1 :
.

Итак, мы нашли один корень x = 1 . Делим x 3 + 2 x - 3 на x - 1 :

Итак,
.

Решаем квадратное уравнение:
x 2 + x + 3 = 0 .
Находим дискриминант: D = 1 2 - 4·3 = -11 . Поскольку D < 0 , то уравнение не имеет действительных корней. Таким образом, мы получили разложение знаменателя на множители:
.

2.
.
(x - 1)(x 2 + x + 3) :
(2.1) .
Подставим x = 1 . Тогда x - 1 = 0 ,
.

Подставим в (2.1) x = 0 :
1 = 3 A - C ;
.

Приравняем в (2.1) коэффициенты при x 2 :
;
0 = A + B ;
.


.

3. Интегрируем.
(2.2) .
Для вычисления второго интеграла, выделим в числителе производную знаменателя и приведем знаменатель к сумме квадратов.

;
;
.

Вычисляем I 2 .


.
Поскольку уравнение x 2 + x + 3 = 0 не имеет действительных корней, то x 2 + x + 3 > 0 . Поэтому знак модуля можно опустить.

Поставляем в (2.2) :
.

Ответ

Пример 3

Вычислить интеграл:
.

Решение

Здесь под знаком интеграла стоит дробь из многочленов. Поэтому подынтегральное выражение является рациональной функцией. Степень многочлена в числителе равна 3 . Степень многочлена знаменателя дроби равна 4 . Поскольку 3 < 4 , то дробь правильная. Поэтому ее можно раскладывать на простейшие дроби. Но для этого нужно разложить знаменатель на множители.

1. Разложим знаменатель дроби на множители. Для этого нужно решить уравнение четвертой степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли один корень x = -1 . Делим на x - (-1) = x + 1 :


Итак,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то мы получили разложение знаменателя на множители:
.

2. Разложим дробь на простейшие. Ищем разложение в виде:
.
Освобождаемся от знаменателя дроби, умножаем на (x + 1) 2 (x 2 + 2) :
(3.1) .
Подставим x = -1 . Тогда x + 1 = 0 ,
.

Продифференцируем (3.1) :

;

.
Подставим x = -1 и учтем, что x + 1 = 0 :
;
; .

Подставим в (3.1) x = 0 :
0 = 2 A + 2 B + D ;
.

Приравняем в (3.1) коэффициенты при x 3 :
;
1 = B + C ;
.

Итак, мы нашли разложение на простейшие дроби:
.

3. Интегрируем.


.