Пассивный и активный транспорт веществ через мембрану. Транспорт веществ через биологические мембраны Активный транспорт веществ через мембрану

Различают несколько способов переноса веществ через мембрану:

Простая диффузия – это перенос небольших нейтральных молекул по градиенту концентрации без затрат энергии и переносчиков. Легче всего проходят простой диффузией через липидную мембрану малые неполярные молекулы, такие как О 2 , стероиды, тиреоидные гормоны. Малые полярные незаряженные молекулы – СО 2 , NH 3 , H 2 O, этанол и мочевина – также диффундируют с достаточной скоростью. Диффузия глицерола идет значительно медленнее, а глюкоза практически не способна самостоятельно пройти через мембрану. Для всех заряженных молекул, независимо от размера, липидная мембрана не проницаема.

Облегченная диффузия – перенос вещества по градиенту концентрации без затрат энергии, но с переносчиком. Характерна для водорастворимых веществ. Облегченная диффузия отличается от простой большей скоростью переноса и способностью к насыщению. Различают две разновидности облегченной диффузии:

а) транспорт по специальным каналам, образованным в трансмебранных белках (например, катионселективные каналы);

б) с помощью белков-транслоказ, которые взаимодействуют со специфическим лигандом, обеспечивают его диффузию по градиенту концентрации (пинг-понг) (перенос глюкозы в эритроциты с помощью белка-переносчика ГЛЮТ-1).

Кинетически перенос веществ облегченной диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью. Поэтому скорость транспорта веществ облегченной диффузией зависит не только от градиента концентраций переносимого вещества, но и от количества беков-переносчиков в мембране.

Простая и облегченная диффузия относится к пассивному транспорту, так как происходит без затраты энергии.

Активный транспорт – транспорт вещества против градиента концентрации (незаряженные частицы) или электрохимического градиента (для заряженных частиц), требующий затрат энергии, чаще всего АТФ. Выделяют два вида его: первично активный транспорт использует энергию АТФ или окислительно-восстановительного потенциала и осуществляется с помощью транспортных АТФ-аз. Наиболее распространены в плазматической мембране клеток человека Na + ,K + - АТФ-аза, Са 2+ -АТФ-аза, Н + -АТФ-аза.

При вторично активном транспорте используется градиент ионов, созданный на мембране за счет работы системы первично активного транспорта (всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы и аминокислот клетками почек, осуществляемые при движении ионов Na + по градиенту концентрации).

Перенос через мембрану макромолекул . Транспортные белки обеспечивают перенос через клеточную мембрану полярных молекул небольшого размера, но они не могут транспортировать макромолекулы, например белки, нуклеиновые кислоты, полисахариды или отдельные частицы. Механизмы, с помощью которых клетки могут усваивать такие вещества или удалять их из клетки, отличаются от механизмов транспорта ионов и полярных соединений.

А) Перенос вещества из среды в клетку вместе с частью плазматической мембраны называют эндоцитоз . Путем эндоцитоза (фагоцитоза) клетки могут поглощать большие частицы, такие как вирусы, бактерии или фрагменты клеток. Поглощение жидкости и растворенных в ней веществ с помощью небольших пузырьков называют пиноцитозом .

Б) Экзоцитоз . Макромолекулы, например белки плазмы крови, пептидные гормоны, пищеварительные ферменты синтезируются в клетках и затем секретируются в межклеточное пространство или кровь. Но мембрана не проницаема для таких макромолекул или комплексов, их секреция происходит путем экзоцитоза. В организме имеются как регулируемый так и не регулируемый пути экзоцитоза. Нерегулируемая секреция характеризуется непрерывным синтезом секретируемых белков. Примером может служить синтез и секреция коллагена фибробластами для формирования межклеточного матрикса.

Для регулируемой секреции характерны хранение приготовленных на экспорт молекул в транспортных пузырьках. С помощью регулируемой секреции происходят выделение пищеварительных ферментов, а также секреция гормонов и нейромедиаторов.

Градиент концентрации (от лат. gradi, gradu, gradus - ход, движение, течение, приближение; con - с, вместе, совместно + centrum - центр) или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделенные полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Активный транспорт - перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ .

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого против градиента концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Пассивный транспорт - перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (например, диффузия , осмос ). Диффузия - пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос - пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят).

Существует три типа проникновения веществ в клетку через мембраны: простая диффузия, облегчённая диффузия, активный транспорт .

Простая диффузия

При простой диффузии частицы вещества перемещаются сквозь билипидный слой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2,N2,бензол) и полярные маленькие молекулы (CO 2 , H 2 O, мочевина ). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Облегченная диффузия

Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегченной диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегченной диффузии по сравнению с простой пассивной диффузией. Скорость облегченной диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегченная диффузия не требует специальных энергетических затрат за счет гидролиза АТФ. Эта особенность отличает облегченную диффузию от активного трансмембранного транспорта.

Обмен веществ между клеткой и окружающей её средой происходит постоянно. Механизмы транспорта веществ в клетку и из неё зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме пассивного и активного транспорта.

Пассивный транспорт осуществляется без затрат энергии, по градиенту концентрации путем простой диффузии, фильтрации, осмоса или облегченной диффузии.

Диффузия – проникновение веществ через мембрану по градиенту концентрации; диффузный транспорт веществ (вода, ионы) осуществляется при участии интегральных белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

Облегченная диффузия – перенос с помощью специальных белков-переносчиков (пермеаз), которые избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. При этом частицы перемещаются быстрее, чем при обычной диффузии.

Осмос – поступление в клетки воды из гипотонического раствора.

Активный транспорт заключается в перемещении веществ против градиента концентрации с помощью транспортных белков (порины, АТФ-азы и др.), образующих мембранные насосы, с затратой энергии АТФ (калий-натриевый насос, регуляция концентрации в клетках ионов кальция и магния, поступление моносахаридов, нуклеотидов, аминокислот).

Перенос макромолекул и более крупных частиц происходит путем пиноцитоза и фагоцитоза благодаря способности мембраны клеток образовывать выпячивания. Края этих выпячиваний смыкаются, захватывая жидкость, окружающую клетку (пиноцитоз), или твердые частицы (фагоцитоз) и образуются окруженные мембраной пузырьки.

Пиноцитоз – один из основных способов проникновения в клетку высокомолекулярных соединений. Образующиеся пиноцитозные вакуоли имеют размеры от 0,01 до 1-2 мкм. Затем вакуоль погружается в цитоплазму и отшнуровывается. При этом стенка пиноцитозной вакуоли полностью сохраняет структуру породившей ее плазматической мембраны. Пиноцитоз и фагоцитоз – принципиально сходные процессы, в которых можно выделить четыре фазы: поступление веществ путем пино-или фагоцитоза, их расщепление под действием ферментов выделяемых лизосомами, перенос продуктов расщепления в цитоплазму (вследствие изменения проницаемости мембран вакуолей) и выделение наружу продуктов обмена.

В зависимости от вида и направления транспорта различают эндоцитоз (перенос в клетку путем прямого пино-или фагоцитоза) и экзоцитоз (перенос из клетки путем обратного пино - или фагоцитоза).

6. ЦИТОПЛАЗМЕ, ЕЁ СТРОЕНИЕ, ХИМИЧЕСКИЙ СОСТАВ.

Цитоплазма – обязательная составная часть клетки. В ней происходят сложные и разнообразные процессы синтеза, дыхания, роста, ей присущи явления раздражимости и наследственности, т.е. все те свойства, которые характеризуют жизнь.

Цитоплазма представляет собой вязкую прозрачную бесцветную массу с удельным весом 1,04 – 1,06. Свет преломляет чуть сильнее воды. Цитоплазма упруга, эластична, с водой не смешивается. Во многих клетках можно наблюдать ее движение: в клетках с одной крупной центральной вакуолью – круговое (циклоз), в клетках со многими вакуолями и тяжами цитоплазмы между ними – струйчатое. Ток цитоплазмы вовлекает в движение клеточные органоиды.

Цитоплазма дифференцирована на бесструктурную массу – гиалоплазму и оформленные образования – клеточные органоиды. Гиалоплазма (цитоплазматический матрикс) – сложная коллоидная система, образованная белками, нуклеиновыми кислотами, углеводами, водой и другими веществами. В зависимости от физиологического состояния и воздействия внешней среды гиалоплазма может находиться в виде золя (жидкости) или геля (более упругого плотного вещества). Гиалоплазма является внутренней средой клетки, где протекают реакции внутриклеточного обмена.

В гиалоплазме клеток, между ядерной оболочкой и цитоплазматической мембраной, расположен цито скелет. Он образован развитой сетью филаментов (белковых трубочек): микрофиламентов (6 – 8 нм), образованных белком актином; промежуточных волокон (10 нм), состоящих из разных фибриллярных белков (цитокератинов и др.); микротрубочек (около 25 нм), построенных из тубулина и способных сокращаться. Цитоскелет определяет форму клетки, участвует в различных движениях самой клетки (при делении) и во внутриклеточном перемещении органоидов и отдельных соединений.

Функции гиалоплазмы :

1) является внутренней средой клетки, в которой происходят многие химические процессы;

2) объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними;

3) определяет местоположение органоидов в клетке;

4) обеспечивает внутриклеточный транспорт веществ (аминокислот, сахаров и др.) и перемещение органоидов (движение хлоропластов в растительных клетках);

5) является зоной перемещения молекул АТФ;

6) определяет форму клетки.

Цитоплазма – сложная химическая многокомпонентная система, содержащая 75-86% воды, 10-20% белков, 2-3% липидов, 1-2% углеводов, 1% минеральных солей. Это суммарный и приблизительный состав цитоплазмы, который не отражает сложности ее химической структуры.

В цитоплазме в растворенном состоянии содержится большое количество свободных аминокислот и нуклеотидов, множество промежуточных продуктов, возникающих при синтезе и распаде молекул. Также обнаруживается большое количество ионов Na + , K + , Mg 2+ , Cl - , HCO 3 2- , HPO 4 2- и др.


Похожая информация.


Обмен клетки с внешней средой различными веществами и энергией является жизненно необходимым условием ее существования.

Для поддержания постоянства химического состава и свойств цитоплазмы в условиях, когда имеют место существенные различия химического состава и свойств внешней среды и цитоплазмы клетки, должны существовать специальные транспортные механизмы , избирательно перемещающие вещества через .

В частности, клетки должны располагать механизмами доставки кислорода и питательных веществ из среды существования и удаления в нее метаболитов. Градиенты концентраций различных веществ существуют не только между клеткой и внешней средой, но и между органеллами клетки и цитоплазмой, и транспортные потоки веществ наблюдаются между различными отсеками клетки.

Особое значение для восприятия и передачи информационных сигналов имеет поддержание трансмембранной разности концентраций минеральных ионов Na + , К + , Са 2+ . Клетка затрачивает на поддержание концентрационных градиентов этих ионов существенную часть своей метаболической энергии. Запасаемая в ионных градиентах энергия электрохимических потенциалов обеспечивает постоянную готовность плазматической мембраны клетки отвечать на воздействие раздражителей. Поступление кальция в цитоплазму из межклеточной среды или из клеточных органелл обеспечивает ответ многих клеток на гормональные сигналы, контролирует выделение нейромедиаторов в , запускает .

Рис. Классификация типов транспорта

Для понимания механизмов перехода веществ через клеточные мембраны необходимо учитывать как свойства этих веществ, так и свойства мембран. Транспортируемые вещества различаются молекулярной массой, переносимым зарядом, растворимостью в воде, липидах и рядом других свойств. Плазматическая и другие мембраны представлены обширными участками липидов, через которые легко диффундируют жирорастворимые неполярные вещества и не проходят вода и водорастворимые вещества полярной природы. Для трансмембранного перемещения этих веществ необходимо наличие специальных каналов в клеточных мембранах. Транспорт молекул полярных веществ затрудняется при увеличении их размеров и заряда (в этом случае требуются дополнительные механизмы переноса). Перенос веществ против концентрационных и других градиентов также требует участия специальных переносчиков и затрат энергии (рис. 1).

Рис. 1. Простая, облегченная диффузия и активный транспорт веществ через мембраны клеток

Для трансмембранного перемещения высокомолекулярных соединений, надмолекулярных частиц и компонентов клеток, не способных проникать через мембранные каналы, используются особые механизмы — фагоцитоз, пиноцитоз, экзоцитоз, перенос через межклеточные пространства. Таким образом, трансмембранное перемещение различных веществ может осуществляться с использованием разных способов, которые принято подразделять по признакам участия в них специальных переносчиков и энергозатратам. Существуют пассивный и активный транспорт через мембраны клетки.

Пассивный транспорт — перенос веществ через биомембрану по градиенту (концентрационный, осмотический, гидродинамический и т.д.) и без расхода энергии.

Активный транспорт — перенос веществ через биомембрану против градиента и с расходом энергии. У человека 30- 40 % всей энергии, образующейся в ходе метаболических реакций, расходуется на этот вид транспорта. В почках 70-80 % потребляемого кислорода идет на активный транспорт.

Пассивный транспорт веществ

Под пассивным транспортом понимают перенос вещества через мембраны по различного рода градиентам (электрохимического потенциала, концентрации вещества, электрического поля, осмотического давления и др.), не требующий непосредственной затраты энергии на его осуществление. Пассивный транспорт веществ может происходить посредством простой и облегченной диффузии. Известно, что под диффузией понимают хаотические перемещения частиц вещества в различных средах, обусловленные энергией его тепловых колебаний.

Если молекула вещества электронейтральна, то направление диффузии этого вещества будет определяться лишь разностью (градиентом) концентраций вещества в средах, разделенных мембраной, например вне и внутри клетки или между ее отсеками. Если молекула, ионы вещества несут на себе электрический заряд, то на диффузию будут оказывать влияние как разность концентраций, величина заряда этого вещества, так и наличие и знак зарядов на обеих сторонах мембраны. Алгебраическая сумма сил концентрационного и электрического градиентов на мембране определяет величину электрохимического градиента.

Простая диффузия осуществляется за счет наличия градиентов концентрации определенного вещества, электрического заряда или осмотического давления между сторонами клеточной мембраны. Например, среднее содержание ионов Na+ в плазме крови составляет 140 мМ/л, а в эритроцитах — приблизительно в 12 раз меньше. Эта разность концентрации (градиент) создает движущую силу, которая обеспечивает переход натрия из плазмы в эритроциты. Однако скорость такого перехода малая, так как мембрана имеет очень низкую проницаемость для ионов Na + . Гораздо больше проницаемость этой мембраны для калия. На процессы простой диффузии не затрачивается энергия клеточного метаболизма.

Скорость простой диффузии описывается уравнением Фика:

dm/dt = -kSΔC/x,

гдеdm / dt - количество вещества, диффундирующее за единицу времени; к - коэффициент диффузии, характеризующий проницаемость мембраны для диффундирующего вещества;S - площадь поверхности диффузии; ΔС — разность концентраций вещества по обе стороны мембраны; х — расстояние между точками диффузии.

Из анализа уравнения диффузии ясно, что скорость простой диффузии прямо пропорциональна градиенту концентрации вещества между сторонами мембраны, проницаемости мембраны для данного вещества, площади поверхности диффузии.

Очевидно, что наиболее легко перемещаться через мембрану путем диффузии будут те вещества, диффузия которых осуществляется и по градиенту концентраций, и по градиенту электрического поля. Однако важным условием для диффузии веществ через мембраны являются физические свойства мембраны и, в частности, ее проницаемость для вещества. Например, ионы Na+, концентрация которого выше вне клетки, чем внутри ее, а внутренняя поверхность плазматической мембраны заряжена отрицательно, должны были бы легко диффундировать внутрь клетки. Однако скорость диффузии ионов Na+ через плазматическую мембрану клетки в покое ниже, чем ионов К+, который диффундирует по концентрационному градиенту из клетки, так как проницаемость мембраны в условиях покоя для ионов К+ выше, чем для ионов Na+.

Поскольку углеводородные радикалы фосфолипидов, формирующих бислой мембраны, обладают гидрофобными свойствами, то через мембрану могут легко диффундировать вещества гидрофобной природы, в частности легко растворимые в липидах (стероидные, тиреоидные гормоны, некоторые наркотические вещества и др.). Низкомолекулярные вещества гидрофильной природы, минеральные ионы диффундируют через пассивные ионные каналы мембран, формируемые каналообразующими белковыми молекулами, и, возможно, через дефекты упаковки в мембране фосфолииидных молекул, возникающие и исчезающие в мембране в результате тепловых флуктуаций.

Диффузия веществ в тканях может осуществляться не только через мембраны клеток, но и через другие морфологические структуры, например из слюны в дентинную ткань зуба через его эмаль. При этом условия для осуществления диффузии остаются теми же, что и через клеточные мембраны. Например, для диффузии кислорода, глюкозы, минеральных ионов из слюны в ткани зуба их концентрация в слюне должна превышать концентрацию в тканях зуба.

В нормальных условиях проходить в значительных количествах через фосфолипидный бислой путем простой диффузии могут неполярные и небольшие по размерам электронейтральные полярные молекулы. Транспорт существенных количеств других полярных молекул осуществляется белками-переносчиками. Если для трансмембранного перехода вещества необходимо участие переносчика, то вместо термина «диффузия» часто используют термин транспорт вещества через мембрану.

Облегченная диффузии , так же, как и простая «диффузия» вещества, осуществляется по градиенту его концентрации, но в отличие от простой диффузии в переносе вещества через мембрану участвует специфическая белковая молекула — переносчик (рис. 2).

Облегченная диффузия — это вид пассивного переноса ионов через биологические мембраны, который осуществляется по градиенту концентрации с помощью переносчика.

Перенос вещества с помощью белка-переносчика (транспортера) основан на способности этой белковой молекулы встраиваться в мембрану, пронизывая ее и формируя каналы, заполненные водой. Переносчик может обратимо связываться с переносимым веществом и при этом обратимо изменять свою конформацию.

Предполагается, что белок-переносчик способен находиться в двух конформационных состояниях. Например, в состоянии а этот белок обладает сродством с переносимым веществом, его участки для связывания вещества повернуты внутрь и он формирует пору, открытую к одной из сторон мембраны.

Рис. 2. Облегченная диффузия. Описание в тексте

Связавшись с веществом, белок-переносчик изменяет свою конформацию и переходит в состояние 6 . При этом конформационном превращении переносчик теряет сродство с переносимым веществом, оно высвобождается из связи с переносчиком и оказывается перемещенным в пору на другой стороне мембраны. После этого белок снова совершает возврат в состояние а. Такой перенос вещества белком-транспортером через мембрану называют унипортом.

Посредством облегченной диффузии могут транспортироваться такие низкомолекулярные вещества, как глюкоза, из интерстициальных пространств в клетки, из крови в мозг, реабсорбироваться некоторые аминокислоты и глюкоза из первичной мочи в кровь в почечных канальцах, всасываться из кишечника аминокислоты, моносахариды. Скорость транспорта веществ путем облегченной диффузии может достигать до 10 8 частиц за секунду через канал.

В отличие от скорости переноса вещества простой диффузией, которая прямо пропорциональна разности его концентраций по обе стороны мембраны, скорость переноса вещества при облегченной диффузии возрастает пропорционально увеличению разности концентраций вещества до некоторого максимального значения, выше которого она не увеличивается, несмотря на повышение разности концентраций вещества по обе стороны мембраны. Достижение максимальной скорости (насыщение) переноса в процессе облегченной диффузии объясняется тем, что при максимальной скорости в перенос оказываются вовлеченными все молекулы белков-переносчиков.

Обменная диффузия — при этом виде транспорта веществ может происходить обмен молекулами одного и того же вещества, находящимися по разные стороны мембраны. Концентрация вещества с каждой стороны мембраны остается при этом неизменной.

Разновидностью обменной диффузии является обмен молекулы одного вещества на одну или более молекул другого вещества. Например, в гладкомышечных клетках сосудов и бронхов, в сократительных миоцитах сердца одним из путей удаления ионов Са 2+ из клеток является обмен их на внеклеточные ионы Na+. На три иона входящего Na+ из клетки удаляется один ион Са 2+ . Создается взаимообусловленное (сопряженное) движение Na+ и Са 2+ через мембрану в противоположных направлениях (этот вид транспорта называют антипортом). Таким образом клетка освобождается от избыточного количества ионов Са 2+ , что является необходимым условием для расслабления гладких миоцитов или кардиомиоцитов.

Активный транспорт веществ

Активный транспорт веществ через — это перенос веществ против их градиентов, осуществляющийся с затратой метаболической энергии. Этот вид транспорта отличается от пассивного тем, что перенос осуществляется не по градиенту, а против градиентов концентрации вещества и на него используется энергия АТФ или другие виды энергии, на создание которых АТФ затрачивалась ранее. Если непосредственным источником этой энергии является АТФ, то такой перенос называют первично-активным. Если на перенос используется энергия (концентрационных, химических, электрохимических градиентов), ранее запасенная за счет работы ионных насосов, затративших АТФ, то такой транспорт называют вторично-активным, а также сопряженным. Примером сопряженного, вторично-активного транспорта являются абсорбция глюкозы в кишечнике и ее реабсорбция в почках с участием ионов Na и переносчиков GLUT1.

Благодаря активному транспорту могут преодолеваться силы не только концентрационного, но и электрического, электрохимического и других градиентов вещества. В качестве примера работы первично-активного транспорта можно рассмотреть работу Na+ -, К+ -насоса.

Активный перенос ионов Na + и К+ обеспечивается белком- ферментом — Na+ -, К+ -АТФ-азой, способной расщеплять АТФ.

Белок Na К -АТФ-аза содержится в цитоплазматической мембране практически всех клеток организма, составляя 10% и более от общего содержания белка в клетке. На работу этого насоса тратится более 30% всей метаболической энергии клетки. Na + -, К+ -АТФ-аза может находиться в двух конформационных состояниях — S1 и S2. В состоянии S1 белок обладает сродством с ионом Na и 3 иона Na присоединяются к трем высокоаффинным местам его связывания, повернутым внутрь клетки. Присоединение иона Na" стимулирует АТФ-азную активность, и в результате гидролиза АТФ Na+ -, К+ -АТФ-аза фосфорилируется за счет переноса на нее фосфатной группы и осуществляет конформационный переход из состояния S1 в состояние S2 (рис. 3).

В результате изменения пространственной структуры белка места связывания ионов Na поворачиваются на внешнюю поверхность мембраны. Аффинность мест связывания к ионам Na+ резко уменьшается, и он, высвободившись из связи с белком, оказывается перенесенным во внеклеточное пространство. В конформационном состоянии S2 повышается аффинность центров Na+ -, К-АТФ-азы к ионам К и они присоединяют два иона К из внеклеточной среды. Присоединение ионов К вызывает дефосфорилирование белка и его обратный конформационный переход из состояния S2 в состояние S1. Вместе с поворотом центров связывания на внутреннюю поверхность мембраны два иона К высвобождаются из связи с переносчиком и оказываются перенесенными внутрь. Подобные циклы переноса повторяются со скоростью, достаточной для поддержания в покоящейся клетке неодинакового распределения ионов Na+ и К+ в клетке и межклеточной среде и, как следствие, поддержания относительно постоянной разности потенциалов на мембране возбудимых клеток.

Рис. 3. Схематическое представление работы Na+ -, К + -насоса

Вещество строфантин (оуабаин), выделяемое из растения наперстянка, обладает специфической способностью блокировать работу Na + -, К+ — насоса. После его введения в организм в результате блокады выкачивания иона Na+ из клетки наблюдаются снижение эффективности работы Na+ -, Са 2 -обменного механизма и накопление в сократительных кардиомиоцитах ионов Са 2+ . Это ведет к усилению сокращения миокарда. Препарат применяется для лечения недостаточности насосной функции сердца.

Кроме Na"-, К + -АТФ-азы имеются еще несколько типов транспортных АТФ-аз, или ионных насосов. Среди них насос, осуществляющий транспорт прогонов водорода (митохондрии клеток, эпителий почечных канальцев, париетальные клетки желудка); кальциевые насосы (пейсмекерные и сократительные клетки сердца, мышечные клетки поперечно-полосатой и гладкой мускулатуры). Например, в клетках скелетных мышц и миокарда белок Са 2+ -АТФ-аза встроен в мембраны саркоплазматического ретикулума и благодаря его работе обеспечивается поддержание высокой концентрации ионов Са 2+ в его внутриклеточных хранилищах (цистерны, продольные трубочки саркоплазматического ретикулума).

В некоторых клетках силы трансмембранной разности электрических потенциалов и градиента концентрации натрия, возникающие в результате работы Na+-, Са 2+ -насоса, используются для осуществления вторично-активных видов переноса веществ через клеточную мембрану.

Вторично-активный транспорт характеризуется тем, что перенос вещества через мембрану осуществляется за счет градиента концентрации другого вещества, который был создан механизмом активного транспорта с затратой энергии АТФ. Различают две разновидности вторично активного транспорта: симпорт и антипорт.

Симпортом называют перенос вещества, который сопряжен с одновременным переносом другого вещества в том же направлении. Симпортным механизмом переносятся йод из внеклеточного пространства в тиреоциты щитовидной железы, глюкоза и аминокислоты при их всасывании из тонкой кишки в энтероциты.

Антипортом называют перенос вещества, который сопряжен с одновременным переносом другого вещества, но в обратном направлении. Примером антипортного механизма переноса является работа упоминавшегося ранее Na + -, Са 2+ — обменника в кардиомиоцитах, К+ -, Н+ -обменного механизма в эпителии почечных канальцев.

Из приведенных примеров видно, что вторично-активный транспорт осуществляется за счет использования сил градиента ионов Na+ или ионов К+. Ион Na+ или ион К перемещается через мембрану в сторону его меньшей концентрации и тянет за собой другое вещество. При этом обычно используется встроенный в мембрану специфический белок-переносчик. Например, транспорт аминокислот и глюкозы при их всасывании из тонкого кишечника в кровь происходит благодаря тому, что белок-переносчик мембраны эпителия кишечной стенки связывается с аминокислотой (глюкозой) и ионом Na+ и только тогда изменяет свое положение в мембране таким образом, что переносит аминокислоту (глюкозу) и ион Na+ в цитоплазму. Для осуществления такого транспорта необходимо, чтобы снаружи клетки концентрация иона Na+ была гораздо больше, чем внутри, что обеспечивается постоянной работой Na+, К+ — АТФ-азы и затратой метаболической энергии.

Конспект лекции № 3.

Тема. Субклеточный и клеточный уровни организации живого.

Строение биологических мембран.

Основа биологической мембраны всех живых организмов- это двойная фосфолипидная структура. Фосфолипиды клеточных мембран представляют собой триглицериды, у которых одна из жирных кислот замещена на фосфорную кислоту. Гидрофильные "головки" и гидрофобные "хвостики" фосфолипидных молекул ориентированы так, что возникает два ряда молекул, головки которых прикрывают от воды "хвостики".

В такую фосфолипидную структуру интегрированы разные по величине и форме белки.

Индивидуальные свойства и особенности мембраны определяются преимущественно белками. Разный белковый состав определяет разницу строения и функций органоидов любых видов животных. Влияние состава липидов мембран на их свойства значительно ниже.

Транспорт веществ через биологические мембраны.


Транспорт веществ через мембрану делят на пассивный (без затрат энергии по градиенту концентрации) и активный (с затратами энергии).

Пассивный транспорт: диффузия, облегченная диффузия, осмос.

Диффузия - это движение растворенных в среде частиц из зоны с высокой концентрацией в зону с низкой концентрацией (растворение сахара в воде).

Облегченная диффузия - это диффузия с помощью белка-канала (поступление глюкозы в эритроциты).


Осмос - это движение частиц растворителя из зоны с меньшей концентрацией растворенного вещества в зону с высокой концентрацией (эритроцит в дистиллированной воде набухает и лопается).

Активный транспорт делят на транспорт, связанный с изменением формы мембраны и транспорт белками-ферментами-насосами.

В свою очередь, транспорт, связанный с изменением формы мембран, делят на три вида.

Фагоцитоз - это захват плотного субстрата (лейкоцит-макрофаг захватывает бактерию).

Пиноцитоз - это захват жидкостей (питание клеток зародыша на первых стадиях внутриутробного развития).

Транспорт белками-ферментами-насосами - это передвижение вещества через мембрану с помощью белков-переносчиков, интегрированных в мембрану (транспорт ионов натрия и калия "из" и "в" клетку, соответственно).

По направлению транспорт делят на экзоцитоз (из клетки) и эндоцитоз (в клетку).

Классификация составных частей клетки проводится по различным критериям.

По наличию биологических мембран органоиды делят на двумембранные, одномембранные и немембранные.

По функциям органоиды можно разделить на неспецифические (универсальные) и специфические (специализированные).

По значению при повреждении на жизненноважные и восстановимые.

По принадлежности к разным группам живых существ на растительные и животные.

Мембранные (одно- и двумембранные) органоиды имеют сходное с точки зрения химии строение.

Двумембранные органоиды.

Ядро. Если клетки организма имеют ядро, то их называют эукариотами. Ядерная оболочка имеет две близкорасположенные мембраны. Между ними находится перинуклеарное пространство. В ядерной оболочке есть отверстия - поры. Ядрышки - это части ядра ответственные за синтез РНК. В ядрах некоторых клеток женщин в норме выделяется 1 тельце Барра - неактивная Х-хромосома. При делении ядра становятся заметны все хромосомы. Вне деления хромосомы, как правило, не видны. Ядерный сок - кариоплазма. Ядро обеспечивает хранение и функционирование генетической информации.

Митохондрии. Внутренняя мембрана имеет кристы, которые увеличивают площадь внутренней поверхности для ферментов аэробного окисления. Митохондрии имеют свою ДНК, РНК, рибосомы. Главная функция - завершение окисления и фосфорилирование АДФ

АДФ+Ф=АТФ.

Пластиды (хлоропласты, хромопласты, лейкопласты). Пластиды имеют собственные нуклеиновые кислоты и рибосомы. В строме хлоропластов имеются дискообразные мембраны, собранные в стопки, где находится хлорофилл, ответственный за фотосинтез.

Хромопласты имеют пигменты, которые определяют желтую, красную, оранжевую окраску листьев, цветков и плодов.

Лейкопласты запасают питательные вещества.

Одномембранные органоиды.

Наружная цитоплазматическая мембрана отделяет клетку от внешней среды. Мембрана имеет белки, которые выполняют разные функции. Различают белки-рецепторы, белки-ферменты, белки-насосы, белки-каналы. Наружная мембрана обладает избирательной проницаемостью, обеспечивая транспорт веществ через мембрану.

У некоторых мембран выделяют элементы надмембранного комплекса - клеточная стенка у растений, гликокаликс и микроворсинки клеток эпителия кишечника у людей.

Имеется аппарат контакта с соседними клетками (например, десмосомы) и субмембранный комплекс (фибриллярные структуры), обеспечивающий устойчивость и форму мембраны.

Эндоплазматическая сеть (ЭПС) - это система мембран, образующих цистерны и каналы для взаимосвязей внутри клетки.

Различают гранулярную (шероховатую) и гладкую ЭПС.

На гранулярной ЭПС имеются рибосомы, где происходит биосинтез белков.

На гладкой ЭПС синтезируются липиды и углеводы, окисляется глюкоза (бескислородный этап), обезвреживаются эндогенные и экзогенные (ксенобиотики-чужеродные, в том числе, лекарственные) вещества. Для обезвреживания на гладкой ЭПС имеются белки-ферменты, катализирующие 4 главных типа химических реакций: окисление, восстановление, гидролиз, синтез (метилирование, ацетилирование, сульфатирование, глюкуронирование). В содружестве с аппаратом Гольджи ЭПС принимает участие в формировании лизосом, вакуолей и других одномембранных органоидов.

Аппарат Гольджи (пластинчатый комплекс) - это компактная система из плоских мембранных цистерн, дисков, пузырьков, которая тесно связана с ЭПС. Пластинчатый комплекс принимает участие в формировании оболочек (например, для лизосом и секреторных гранул) отграничивающих гидролитические ферменты и другие вещества от содержимого клетки.

Лизосомы - пузырьки с гидролитическими ферментами. Лизосомы активно участвуют во внутриклеточном пищеварении, в фагоцитозе. Они переваривают захваченные клеткой объекты, сливаясь с пиноцитарными и фагоцитарными пузырьками. Могут переваривать собственные изношенные органоиды. Лизосомы фагов обеспечивают иммунную защиту. Лизосомы опасны тем, что при разрушении их оболочки может произойти аутолизис (самопереваривание) клетки.

Пероксисомы - это мелкие одномембранные органоиды, содержащие фермент каталазу, который нейтрализует перекись водорода. Пероксисомы - это органоиды защиты мембран от свободнорадикального перекисного окисления.

Вакуоль - это одномембранные органоиды, характерные для растительных клеток. Их функции связаны с поддержанием тургора и (или) запасанием веществ.

Немембранные органоиды.

Рибосомы - это рибонуклеопротеиды, состоящие из большой и малой субъединиц р-РНК. Рибосомы являются местом сборки белка.

Фибриллярные (нитеобразные) структуры - это микротрубочки, промежуточные филаменты и микрофиламенты.

Микротрубочки. По строению напоминают бусы, нить которых завита в плотную пружину-спираль. Каждая "бусинка" представляет собой белок-тубулин. Диаметр трубочки 24 нм. Микротрубочки - это часть системы каналов, обеспечивающих внутриклеточный транспорт веществ. Они укрепляют цитоскелета, принимают участие в формировании веретена деления, центриолей клеточного центра, базальных телец, ресничек и жгутиков.

Клеточный центр - участок цитоплазмы с двумя центриолями, образованными из 9 триплетов (по 3 микротрубочки). Таким образом, каждая центриоль состоит из 27 микротрубочек. Считается, что клеточный центр является базой для формирования нитей веретена деления клетки.

Базальные тельца - это основания ресничек и жгутиков. На поперечном разрезе реснички и жгутики имеют девять пар микротрубочек по окружности и одну пару в центре, всего 18+2=20 микротрубочек. Реснички и жгутики обеспечивают движение микроорганизмов и клеток (сперматозоиды) в среде их обитания.

Промежуточные филаменты имеют диаметр 8-10 нм. Они обеспечивают функции цитоскелета.

Микрофиламенты с диаметром 5-7 нм преимущественно состоят из белка актина. Во взаимодействии с миозином они отвечают не только за мышечные сокращения, но и за сократительную активность не мышечных клеток. Так, изменения формы мембраны при фагоцитозе и активность микроворсинок объясняют работой микрофиламентов.