Адаптации организмов к условиям обитания. Физиологические и биохимические основы адаптации Адаптация к кислородному режиму и нырянию

Адаптации организмов к температуре. Живые организмы в ходе длительной эволюции выработали разнообразные приспособления, которые позволяют регулировать обмен веществ при изменениях температуры окружающей среды. Это достигается: 1) различными биохимическими и физиологическими перестройками в организме, к которым относятся изменение концентрации и активности ферментов, обезвоживание, понижение точки замерзания растворов тела и т.д.; 2) поддержанием температуры тела на более стабильном температурном уровне, чем температура среды обитания, что позволяет сохранить сложившийся для данного вида ход биохимических реакций.[ ...]

Адаптации к температуре. Растения, беспозвоночные и низшие позвоночные животные - рыбы, амфибии и рептилии лишены способности поддерживать какую-то определенную температуру тела. Они больше зависят от тепла, поступающего извне, чем от тепла, образующегося в обменных процессах. При этом во всем интервале изменений температура тела мало (на уровне десятых долей или не более 1-2°) отличается от температуры среды. Эти организмы могут быть обозначены как эктотермы, т.е. подчиненные внешней температуре. Некоторые из них обладают ограниченной способностью к кратковременной термостабилизации за счет теплоты биохимических реакций, интенсивной мышечной активности. Но только настоящие эндотермы - птицы и млекопитающие - могут поддерживать постоянно высокую температуру тела при значительных изменениях температуры окружающей среды. Они располагают средствами эффективной регуляции теплоотдачи и теплопродукции организма. У некоторых из них соответствующие механизмы достигают высокой мощности и совершенства. Так, песец, полярная сова и белый гусь легко переносят сильный холод без падения температуры тела и при поддержании разности температур тела и среды в 100° и более. Благодаря толщам подкожного жира и особенностям периферического кровообращения превосходно приспособлены к длительному пребыванию в ледяной воде многие ластоногие и киты.[ ...]

Биохимический распад того или иного вещества зависит от ряда химических и физических факторов, как, например, наличия различных функциональных групп в молекуле, величины молекулы и ее структуры, растворимости вещества, изомеризации, полимеризации, образования промежуточных продуктов и их взаимодействия и др. Этот распад обусловливается также биологическими факторами - сложностью обмена у микроорганизмов, вариабельностью штаммов бактерий, влиянием среды и длительностью адаптации микробов и пр. Механизм адаптации пока неизвестен. Сроки и пределы адаптации микроорганизмов различны - от нескольких часов до 200 дней и более .[ ...]

Биохимические изменения. Общеизвестно, что изменение температуры оказывает существенное влияние на скорость метаболических реакций и общую интенсивность обмена. Повышение температуры в толерантном диапазоне ведет к усилению интенсивности обмена, а понижение температуры - к его снижению. Между тем основные обменные процессы в организме должны поддерживаться на определенном уровне, который может изменяться лишь в довольно узких пределах, иначе наступают нарушения метаболического гомеостаза, несовместимые с жизнью. Особо следует подчеркнуть, что для нормального течения обменных процессов важны как уровень наступающих изменений температуры, так и их скорость. Резко выраженное и стремительно развивающееся понижение температуры может привести к такому замедлению метаболических процессов, которое уже не в состоянии обеспечить нормальный ход основных процессов жизнедеятельности. Сопоставимое по выраженности и скорости, но противоположное по направленности изменение температуры, т. е. ее повышение, также может привести к такому увеличению интенсивности обменных процессов, которое трудно или невозможно обеспечить кислородом. Все это поставило рыб и других эктотермных животных перед необходимостью выработки различных механизмов контроля интенсивности обменных процессов, обеспечивающих поддержание уровня метаболической активности в относительной независимости от температуры окружающей среды. Ключевую роль при этом играют ферменты - катализаторы бесчисленного множества химических реакций, совокупность которых составляет метаболизм. Поскольку практически все клеточные реакции катализируются ферментами, регуляция метаболизма сводится к регуляции типа и интенсивности ферментативных функций.[ ...]

Адаптация к устойчивым температурам сопровождается у пойкилотермных животных компенсаторными изменениями уровня метаболизма, которые нормализуют жизненные функции в соответствующих режимах температур. Такие адаптации выявляются при сравнении близких видов, географических популяций одного вида и сезонных состояний особей одной популяции. Общая закономерность адаптивных сдвигов обмена состоит в том, что у животных, адаптированных к более низкой температуре, уровень метаболизма выше, чем у приспособленных к более высокой (рис. 4.8). Это относится как к общему уровню обмена, так я к отдельным биохимическим реакциям. Показано, например, что уровень и реактивность на температурные изменения амилрлитической активности экстракта поджелудочной железы остромордых лягушек отличается у разных географических популяций этого вида. Если активность при 35°С принять за 100 %, то при 5°С у лягушек из популяции п-ва Ямал активность составит 53,7, а в популяции из окрестностей г. Екатеринбурга - только 35 %.[ ...]

Адаптация (приспособление) или приведение организма в соответствие с окружающей средой (о очищаемой водей) обусловливает резкое увеличение интенсивности и эффективности биохимической очистки. Адаптация особенно вдкна в тех случаях, котла очищаемым суботратом является новое синтетическое вещество, ранее в природе ве существовавшее. Иногда адаптация цродолкается несколько месяцев. Время адаптации можно уменьшить, если провести засев уже адаптированной заранее микрофлорой. Способность микроорганизмов окиолять органические вещества определяется активностью их ферментов., каждый из которых избирательно катализирует одну реакцию. набор систем ферментов зависит от оостава и концентрации примесей сточных вод, а скорость образования ферментов - от физиологической активности микроорганизмов.[ ...]

При биохимическом окислении аренов существенную роль играет парциальное давление окисляющего кислорода. Повышение давления до определенного предела (в зависимости от состава биоценоза) приводит к возрастанию скорости реакции. В этом случае скорость процесса лимитируется растворимостью кислорода в водной фазе и адаптацией микроорганизмов . В сравнении с другими микроорганизмами Nocardia corallina, N. ораса, N. actinomorpha легче других адаптируются к повышенному давлению окисляющего газа.[ ...]

В основе адаптации микробных ценозов к промышленным загрязнениям лежат разнообразные биологические механизмы, неоднородные в генетическом отношении. Микробы-деструкторы, от биохимических свойств которых зависит окислительная способность биоценоза, могут изменяться либо фенотипически, временно приобретая способность ферментировать те или иные соединения, либо генотипически - с образованием новых форм микробов, у которых наследственно закреплена способность синтезировать новый фермент. Регуляторные механизмы обеспечивают надлежащую координацию метаболической активности отдельных ферментных систем, предупреждают избыточное образование ферментов, промежуточных и конечных продуктов и позволяют бактериям экономно и целесообразно использовать отдельные химические вещества. Эта удивительная гармония клеточного метаболизма - одна из интереснейших проблем ассоциативных отношений микробов.[ ...]

Вещества, растворенные в воде,окисляются быстрее, чем в дисперсном состоянии. Наличие функциональных групп способствует биологическому окислению, а третичный углеродный атом - ухудшает. Наличие двойной овязи в некоторых случаях облегчает биологическое разложение соединения.[ ...]

Физиолого-биохимическая адаптация человека к шуму невозможна.[ ...]

Физиолого-биохимическая адаптация человека к шуму невозможна. Сильный шум - физический наркотик для человека. Музыкальный шум 120- 130 децибел (дБ) сопоставим с разрядом молнии или взлетом реактивного самолета (100 дБ).[ ...]

Возможность биохимической деструкции хлорофоса активным илом при концентрации последнего в пределах 25-500 мг/дм3 показана в работе . Предварительная адаптация микрофлоры позволила значительно интенсифицировать этот процесс.[ ...]

Для изучения биохимической активности илов, полученных как из одной культуры, так и из смеси культур, был проведен ряд опытов. Методика опытов сводилась к следующему. В микроаэратор, содержащий 1 л стерильной промышленной сточной воды, вводили активный ил определенной концентрации, иловую жидкость аэрировали различные периоды времени, а затем аэрацию прекращали; после 30 мин. отстаивания жидкость сифониро-вали и использовали для химического анализа, а активный ил заливали свежей сточной водой. В некоторых случаях этот же активный ил использовали без предварительной адаптации для очистки сточных вод иного состава.[ ...]

Удельный вес биохимической компоненты в мгновенной температурной адаптации, по-видимому, меньше, чем физиологической компоненты, ибо организму проще избежать неблагоприятный температурный режим, чем прибегать к "включению" биохимических механизмов. Другое дело, когда речь идет о постепенных и довольно продолжительных (дни, недели, месяцы), скажем, сезонных изменениях температурного режима водоема или его тепловом загрязнении. Здесь на передний план выходят наряду с физиологическими и биохимические изменения, обеспечивающие восстановление функциональной активности и нормальной жизнедеятельности организма при новом температурном режиме с помощью компенсации интенсивности метаболизма (метаболическая акклимация). Поскольку интенсивность основных метаболических процессов, обеспечивающих организм энергией и "строительным" мате)иалом (образование промежуточных веществ; синтез нуклеиновых кислот, белков, липидов и углеводов), необходимых для нормальной жизнедеятельности, определяется ферментами, постольку ферменты приобретают решающую роль в биохимической адаптации к постоянно меняющимся температурным условиям.[ ...]

Поскольку все биохимические процессы проходят при участии ферментов, то при поступлении органических веществ иного химического состава и строения жизнедеятельность микроорганизмов из-за токсичного действия может полностью нарушаться или же в течение некоторого времени происходит приспособление (адаптация) микроорганизмов к изменившимся условиям. Следствием этого является выработка новых ферментов, под действием которых начинает разлагаться новый вид органического загрязнения. В зависимости от химической природы загрязнения, его концентрации, количества микроорганизмов, скорости их размножения и других внешних факторов период адаптации может длиться от нескольких дней до нескольких месяцев.[ ...]

При отсутствии биохимических очистных сооружений для заражения может быть использован речной ил, взятый ниже сброса сточных вод (примерно на расстоянии 0,5 км) или бытовая сточная вода, микрофлора которой должна быть предварительно адаптирована. Для адаптации микрофлоры бытовую сточную воду разбавляют водопроводной водой до бихроматной окисляемости, равной 50-60 мг О г/л, и в нее добавляют производственный сток в таком количестве, чтобы бихроматная окисляемость смеси была равна 100-150 мг О г/л. Раствор ставят в термостат при 30° С или сохраняют при комнатной температуре. Через 2 суток жидкость становится мутной, иногда на поверхности ее появляется пленка, что указывает на обильное развитие микрофлоры (желательна проверка под микроскопом). Когда бихроматная окисляемость снизится на 50-60%, еще раз добавляют воду из производственного стока и через 2-3 суток жидкость с адаптированной микрофлорой фильтруют, поступая так, как описано выше.[ ...]

Определение БПК биохимически очищенных сточных вод. Сточные воды, прошедшие биохимическую очистку в соответствующих установках, имеют некоторые особенности, которые следует подчеркнуть. Значения БПК таких вод невелцки, и в ходе определения биохимически окисляются кислородом главным образом лишь трудноокисляемые («биохимически жесткие») соединения. Поэтому кривая, показывающая возрастание БПК во времени (по суткам), относительно пологая (скорость окисления незна-. чительна). В этих условиях особенно важно применение адапти« рованной микрофлоры, чтобы не затягивать чрезмерно процесс, и адаптация вводимой микрофлоры должна проводиться именно на этой воде, прошедшей биохимическую очистку, а не на неочищенной воде. Воды эти содержат много нитритов, и потому удаление последних сульфаминовой кислотой или азидом натрия обязательно. Избыток сульфаминовой кислоты не повредит, так как она разлагается, не образуя окисляющихся веществ.[ ...]

Физиологические адаптации проявляются, например, в особенностях ферментативного набора в пищеварительном тракте животных, определяемого составом пищи. Так, верблюд способен обеспечивать потребности во влаге путем биохимического окисления собственного жира.[ ...]

Физиологические адаптации. Вырабатываемое живыми организмами тепло как побочный продукт биохимических реакций может служить источником повышения температуры их тела. Поэтому многие организмы, используя физиологические процессы, могут в определенных пределах менять температуру своего тела. Эту способность называют терморегуляцией.[ ...]

О до +100 С, поскольку биохимические реакции в клетках протекают в водных растворах. Это, однако, не совсем верно. Главные факторы, определяющие температурные пределы активной жизнедеятельности или сохранения жизнеспособности организмов - температурная устойчивость белков, клеточных мембран и других макромолеку-лярных комплексов клетки, а также сбалансированность биохимических реакций в процессах клеточного метаболизма. Белки - сложные биополимеры, функциональная активность которых зависит от пространственной структуры молекулы, которая поддерживается многими связями - сильными (ковалентными и ионными) и слабыми, в том числе водородными, чувствительными к температуре. При низких температурах эти связи устойчивы, поэтому адаптация к жизни при температурах, близких к нулю, достигается в основном за счет смещения температурного оптимума активности ферментов и согласования его у всего комплекса ферментов и регуляторных механизмов.[ ...]

Наконец, еще один путь биохимической адаптации - это выработка гомологичных ферментов, для К которых характерна более или менее выраженная независимость от изменений температуры в толерантном для вида диапазоне. Яркий пример такого рода адаптации дает нам пируваткина-за Gilichthys mirabilis (рис. 16), способность которой связывать фосфоенол-пируват (субстрат) практически не зависит от температуры в довольно значительном диапазоне. Это пример выработки эвритермного фермента, существенно отличающегося по степени температурной зависимости К в сравнении со стенотермными изоферментами пируваткиназы радужной форели.[ ...]

Расчет любых сооружений биохимической очистки производственных сточных вод ведется по полной биохимической потребности в кислороде. Величина БПК5 не дает никакого представления о потребности в кислороде, так как она зависит от степени адаптации микробов к соединениям, содержащимся в сточной воде, от количества микробов, взятых для заражения, и от принятого разбавления. Так, БПК5 1 мг вещества по данным различных авторов колеблется для формальдегида от 0,33 до 1,1; для ацетальдегида от 0,66 до 0,91; для фурфурола от 0,28 до 0,77; для метилового спирта от 0,12 до 0,96; для уксусной кислоты от 0,34 до 0,77. В табл. 44 приводятся данные о полной биохимической потребности в кислороде для ряда органических соединений, полученные отечественными специалистами.[ ...]

Стратегия и конкретные пути биохимической адаптации к вечно колеблющимся факторам внешней среды, в том числе и к температурному фактору, детально рассмотрены в прекрасной монографии П. Хочачка и Дж. Поэтому мы ограничимся лишь кратким изложением основных идей и фактических данных, свидетельствующих о важнейшем значении биохимических основ температурной адаптации рыб.[ ...]

Стратегия биохимической адаптации.[ ...]

Весьма разнообразно влияние на биохимические процессы органических токсичных веществ. Многие из них служат источником углерода для микроорганизмов, вследствие чего они могут перерабатываться при значительных концентрациях в очищаемых сточных водах. Однако процесс их биохимического окисления протекает замедленно, особенно в его начале; по мере приспособления микроорганизмов интенсивность процесса повышается и через какой-то период времени достигает максимального своего значения. Продолжительность периода адаптации зависит от вида токсичных веществ и их концентрации; обычно он занимает до двух месяцев и лишь иногда больше.[ ...]

Раздражители - факторы, вызывающие биохимические и физиологические изменения (адаптации).[ ...]

Рассмотренная технологическая схема биохимических очистных сооружений наиболее проста по аппаратурному оформлению, однако ее целесообразно применять только в том случае, если промышленные сточные воды имеют стабильный состав и неизменные основные параметры: расход, pH, температуру, содержание загрязняющих веществ, состав загрязнений. Практика эксплуатации очистных сооружений на химических предприятиях показала, что чаще всего промышленные сточные воды имеют переменный состав, что дестабилизирует технологический режим работы очистных сооружений, отрицательно влияет на активный ил, препятствует адаптации последнего к загрязняющим веществам. Поэтому более целесообразно использовать технологическую схему очистных сооружений с предварительным усреднением поступающих в них промышленных сточных вод (рис. 4.5).[ ...]

Молекулярные механизмы температурной адаптации включают в себя изменения первичной структуры ферментов,с помощью таких фундаментальных механизмов, как активация генов, транскрипция, трансляция и сборка новых вариантов ферментов (изоферментов), изменение концентраций отдельных изоферментов, приспособленных к определенным температурам, изменение кинетических свойств данного фермента, изменение кофакторов и микросреды, в которой функционируют ферменты, кон-формационные изменения, ведущие к появлению "мгновенных", или функциональных, изоферментов. Выбор стратегии и конкретных механизмов биохимической адаптации рыб определяется прежде всего скоростью наступления и длительностью сохранения температурных изменений, а также видовыми экологическими и возрастными особенностями рыб.[ ...]

В период пуска в эксплуатацию сооружений биохимической очистки обязательным является постепенное приспособление (адаптация) микроорганизмов активного ила к окислению загрязнений, находящихся в сточных водах.[ ...]

Окислительная работа аэротенка № 1. Опыты по биохимической очистке сточных вод, как правило, начинаются с очистки стока небольшой концентрации по органическим веществам с целью адаптации микрофлоры ила к специфическим загрязнителям. Получение устойчивых результатов очистки позволяет изменять режим работы сооружения.[ ...]

По исследованиям Милса , для оптимизации процессов биохимической очистки увеличение концентрации активного ила должно сочетаться с термобиозом. Термобиозом называют функционирование и соответственно адаптацию микроорганизмов при температурах выше 30 °С, когда в метаболизме микроорганизмов начинают преобладать термофильные процессы, сопровождающиеся, в частности, ускорением роста, ускорением биохимического окисления загрязнений, а также увеличением ферментативной активности. Среди термофилов в уплотненных илах преобладали термотолерантные микроорганизмы (Pseudomonas, Bacterium, Sarcina). При таком соотношении - порядка 1: 800, эвритермные термофилы играют в биохимическом окислении промышленных загрязнений подчиненную роль.[ ...]

Основой для разработки методов двух- и многоступенчатой биохимической очистки сточных вод является идея культивирования на очистных станциях активных илов, приспособленных к окислению отдельных групп органических загрязнений. Считается, что чем ближе адаптация (специализация) активного ила к данному виду загрязнений, тем успешнее проходит процесс биохимической очистки. Одним из путей для инженерной реализации этой идеи является создание ступенчатой биохимической очистки, на каждой ступени которой функционирует определенная культура активного ила. Понятно, что чем больше разница в скоростях биохимического окисления отдельных компонентов сточных вод, чем выше их начальные концентрации, тем эффективнее применение ступенчатой схемы очистки.[ ...]

Установлено, что с п о в ы ш е и и ем температур ы сточной воды скорость биохимической реакции возрастает. Однако на практике ее поддерживают в пределах 20-30 °С. Превышение указанной температуры может привести к гибели микроорганизмов, При более низких температурах снижается скорость очистки, замедляется процесс адаптации микробов к новым видам загрязнений, ухудшаются процессы нитрификации, фло-куляции и осаждения активного ила. Повышение температуры в оптимальных пределах ускоряет процесс разложения органических веществ в 2-3 раза. С увеличением температуры сточной воды уменьшается растворимость кислорода, поэтому для поддержания необходимой концентрации его в воде требуется производить более интенсивную аэрацию.[ ...]

В воде, содержавшей бытовые загрязнения, при отсутствии предварительной адаптации бактериальной флоры эмульгатор СТЭК в концентрациях 10-30 мг/л вызывал несущественное повышение, а в концентрации 100 мг/л - некоторое снижение биохимического потребления кислорода. Статистическая обработка результатов двух параллельных серий опытов (по 5 опытов в серии) - контрольной и испытывающей влияние СТЭКа в концентрации 5 мг/л - не показала достоверных различий между величинами ВПК, вычисленными по сериям, в различные сроки эксперимента (опыт проводился в течение 20 суток).[ ...]

Для каждого конкретного стока активный ил должен постепенно адаптироваться. При адаптации яла и обеспечении нужного соотношения бактерий и простейших эффективность биохимической очистки повышается, а прирост избыточного активного ила снижается. Даже после адаптации вредные ¡вещества, содержащиеся в сточной воде, могут быть в концентрации выше предельной и оказывать токсичное воздействие на микроорганизмы ила.[ ...]

В монографии рассматривается широкий круг вопросов по генетически обусловленному биохимическому полиморфизму у человека. Представлен исторический очерк изучения ге-нетико-биохимической изменчивости в популяциях и проанализированы собственные результаты исследования биохимического полиморфизма по значительному числу генетических систем ферментных и других белков крови. Составлены геногеографические карты, существенно расширяющие картину генетикоантропологической дифференциации на территории СССР. Содержится новая информация о формировании этнических групп и антропологических типов Северной Азии и сопредельных территорий в пространстве и времени. Критически проанализированы данные по эволюционной адаптации человека на биохимическом уровне. Дается оценка одного из важнейших факторов генетической динамики - скорости мутационного процесса в некоторых популяциях СССР.[ ...]

Постоянными компонентами городских сточных вод являются поверхностно-активные вещества. По отношению к биохимическому окислению они делятся на «мягкие» и «жесткие». Жесткие ПАВ практически не подвергаются биохимическому окислению. Способность ПАВ к биохимическому окислению определяется их химической структурой. Легко подвергаются биохимическому окислению анионные ПАВ- алкилсульфаты с нормальной углеводородной цепью. ПАВ, имеющие разветвленную углеводородную цепь, содержащую бензольное ядро, и неионогенные ПАВ наиболее устойчивы к биохимическому окислению. Способность к биохимическому окислению ПАВ может быть повышена при адаптации микроорганизмов, которую следует начинать с введения малых количеств ПАВ (порядка 5 мг/л).[ ...]

Высокая структурная и сопутствующая ей функциональная гетерогенность гемоглобина рыб являются одними из важнейших биохимических механизмов широкой адаптации к разнообразному спектру меняющихся факторов как внутренней, так и внешней среды. Наличие в организме сложного, многокомпонентного гемоглобина, каждый из которых имеет свои оптимальные условия функционирования, увеличивает его реактивную способность к присоединению и отдаче кислорода, т. е. содействует в конечном счете оптимальному обеспечению организма кислородом при разных физиологических и постоянно меняющихся экологических условиях.[ ...]

Состав промышленных сточных вод разнообразен. Очень часто вещества, содержащиеся в сточных водах, сильно замедляют процесс биохимического окисления, а иногда оказывают токсическое действие. Однако известно, что микроорганизмы можно адаптировать (приспособить) к различным соединениям, в том числе даже токсичным. При определении биохимической потребности в кислороде промышленных стоков предварительная адаптация микрофлоры имеет решающее значение. Для адаптации требуется определенное время.[ ...]

Другая важнейшая адаптивная реакция, возникающая при длительном или краткосрочном дефиците кислорода в окружающей среде, но уже на биохимическом (молекулярном) уровне - это изменение сродства гемоглобина к кислороду. Еще в начале текущего столетия А. Крог и И. Лейч показали, что адаптация рыб к пониженному содержанию кислорода осуществляется за счет повышения сродства гемоглобина к кислороду. Сопоставляя величину напряжения кислорода в воде, необходимую для полунасыщения крови у малоподвижных пресноводных рыб (карп, угорь), часто встречающихся с дефицитом кислорода в естественных условиях обитания, с высокоподвижной оксифильной форелью, они обнаружили, что у малоподвижных рыб эта величина в 3-5 раз ниже, чем у высокоподвижных. Такая же зависимость выявлена и при сопоставлении двух, различающихся по уровню активности, видов морских рыб - придонной камбалы и пелагической трески, однако в этом случае различия достигали лишь двукратной величины (рис. 18) ■ Исследования этого плана были продолжены на морских рыбах Р. Рутом , который пришел к выводу, что кровь высокоактивных рыб обладает повышенной кислородной емкостью в сравнении с кровью малоактивных рыб. По мнению ряда специалистов , степень сродства гемоглобина к кислороду является важнейшим фактором, определяющим уровень устойчивости рыб к дефициту кислорода. Выявлено наличие связи между величинами Р о и Р95 крови и уровнем пороговых и критических /э02 (рис. 19) для многих морских и пресноводных видов рыб, относящихся к различным по уровню активности экологическим группам .[ ...]

Обобщая представленные в настоящей главе экспериментальные данные, необходимо признать, что рыбы обладают высокоэффективными физиологическими и биохимическими механизмами адаптации к длительному или кратковременному дефициту кислорода в окружающей среде (экзогенная гипоксия) или возникающему в результате напряженной мышечной работы и в других стрессовых ситуациях (эндогенная гипоксия).[ ...]

В водоемах с большими температурными перепадами, амплитуда которых достигает нескольких десятков градусов, обитают эвритермные рыбы. Если в основе адаптации стенотермных рыб лежат поведение, актив- ный выбор мест обитания, то в основе адаптации эвритермных рыб - глубокие биохимические механизмы (изменение концентрации ферментов, их активности, удельного веса отдельных изоформ того или иного фермента). Тепловые" изоферменты проявляют высокое сродство к субстратам при температурах, близких к "верхнему диапазону" для данного вида (приблизительно 15-20°С), и быстро утрачивают его при низких температурах (примерно 10°С и ниже). Напротив, "холодовые" изоферменты лучше всего связывают субстрат при температурах менее 10°С, а при более высоких температурах обнаруживают к нему меньшее сродство, чем "тепловые" варианты .[ ...]

Если вы внимательно читали три предыдущие главы, то, наверное, обратили внимание, что при приспособлении организма к изменениям различных условий среды нередко наблюдаются однонаправленные и вполне соизмеримые изменения одних и тех же биохимических параметров. Оказывается, что адаптация организма к какому-либо одному фактору среды может способствовать приспособлению его к другим факторам, повышать устойчивость к ним. Это явление называют перекрестной адаптацией. Прежде всего обратимся к фактам, а затем попытаемся разобраться в молекулярных основах перекрестной адаптации человека и ее практическом значении.[ ...]

Экологические представления об эволюционных процессах в популяциях, названных Н. В. Тимофеевым-Ресовским микроэволюцией, во многом разработаны уральской школой экологов под руководством С. С. Шварца. Согласно этим представлениям микро-эволюционный процесс проходит следующие стадии: 1) возникновение морфологических изменений в популяции при адаптации к конкретным условиям обитания; 2) накопление вслед за этим физиологических изменений; 3) биохимические изменения в организме и, соответственно, изменения генетической информации; 4) образование новых подвидов; 5) образование новых видов.[ ...]

Многие придонные рыьы глубоких озер, обитающие в полностью обескислороженных водах или при значительном дефиците кислорода, рыбы тропических болот или мелких, промерзающих озер постоянно встречаются с острым дефицитом кислорода и вынуждены были на протяжении своей длительной эволюции совершенствовать возможности анаэробного обмена. В этих условиях на передний план выдвигаются биохимические механизмы адаптации на молекулярном уровне, ибо только они могут обеспечить длительное выживание рыб в таких экстремальных условиях, как постоянный дефицит кислорода или даже его кратковременное отсутствие.[ ...]

При установлении предельно допустимой концентрации вредного вещества в воздухе рабочей зоны наиболее важным и ответственным этапом является определение минимально действующей (пороговой) концентрации (ПК) в длительном (хроническом) эксперименте. В качестве подопытных животных используют белых крыс. Обычно исследуют результаты воздействия 2-3-кратных концентраций, с помощью которых устанавливают подпороговую (максимально недействующую) и пороговую (минимально действующую) концентрацию (ППК и ПК) по функциональным, биохимическим и другим показателям. Установленные в результате длительного эксперимента подпороговые и пороговые концентрации позволяют выявить особенности воздействия вредных веществ и особенности адаптации животных к этому воздействию. С учетом выявленных особенностей выбирают значения ПДК. Переход к ним производится путем умножения пороговых концентраций на коэффициент запаса, величина которого зависит от токсичности вещества и изменяется от 3 до 20.[ ...]

В соответствии с современными представлениями основным механизмом регуляции метаболических процессов является изменение активности отдельных ферментов или ферментных систем, обеспечивающих нормальный ход метаболизма. В свою очередь, регуляция ферментативной активности осуществляется тремя основными путями: 1) изменением активности ферментов ("модуляционная" стратегия); 2) изменением концентраций ферментов ("количественная" стратегия); 3) изменением набора ферментов ("качественная" стратегия) . Удельный вес каждого из этих механизмов биохимической адаптации в развитии трех временных форм компенсации температурных эффектов: немедленной, замедленной и длительной - неодинаков.[ ...]

Физиологи различают отдельные иидн устойчивости: морозо- и холодоустойчивость, жаро- и засухоустойчивость, устойчивость к засолению, заболеваниям. Но количество видов устойчивости растет: "появились" газоустойчивость (03, Б02, Ш4), устойчивость к тяжелым металлам (ртуть, медь, кадмий и др.), гербицидам, углеводородам и другим техногенным факторам. Если развивать этот "факторный" принцип классификации устойчивостей, то можно прийти к существованию устойчивости к отдельным температурам (-25? -5° +40? +50°) или различным концентрациям химических агентов. С точки зрения специфических механизмов устойчивости надо искать в клетке множество отдельных путей приспособления. Такая задача нам кажется слишком сложной и вообще нереальной. Трудно представить, что клетка обладает специфической устойчивостью к некоторому веществу, которого она в природных условиях ранее не встречала. Наверное рациональнее исходить из положения, что механизмы реагирования живой системы на внешние воздействия подвергались в эволюции естественному отбору и потому биохимическая стратегия адаптации клетки должна быть однотипнее и рациональнее. Поэтому разумнее отдельные вида устойчивости рассматривать как частные проявления общих принципов надежности живой системы (Гродзинский, 1983).

Проблема устойчивости организма, его адаптации к изменяющимся факторам среды остается оной из центральных проблем биологии. Этой темой в сое время занимались такие ученые как А.Н. Северцов, И.И. Шмальгаузен, К.М. Завадский, С.С. Шварц, Е.М. Крепс и др.

Проблема адаптации охватывает широкий круг вопросов приспособления организма к условиям среды обитания. Эта проблема стоит в центре многих общебиологических дисциплин, поскольку она затрагивает ряд фундаментальных свойств живых организмов. Но несмотря на большое разнообразие типов, уровней и механизмов адаптаций, их можно рассматривать как переходный процесс, вызванный сменой среды или отдельных ее факторов: переход живой системы любого уровня организации из одного устойчивого состояния в другое.

Каждый организм живет в многокомпонентной среде обитания, которая постоянно изменяется и организм вынужден постоянно к ней приспосабливаться. Здесь важно знать, что одни виды обладают узкой, другие - широкой приспособляемостью.

Важнейшей особенностью адаптаций является их относительный характер, в соответствии с которым организм или популяция лучше или хуже приспособлены к конкретному типу природной среды в настоящий момент. Существенными признаками приспособительных процессов являются: системный характер, фазность и цена адаптации, включающая размер затрат ресурсов организма или популяции на приспособление к новым условиям.

Адаптации к условиям окружающей среды, как универсальное биологическое явление формируются и проявляются на самых различных уровнях биологической организации, - от молекулярного до биоценотического. На поведенческом уровне организмы действуют обычно таким путем, который по всей видимости, увеличивает их шансы на выживание в данной среде и использование этой среды. На анатомическом уровне структуры организма часто обнаруживают очевидное соответствие его образу жизни. На физическом уровне способы осуществления жизненных функций нередко отражают те внешние условия, с которыми сталкивается данный вид.

Биохимические изменения адаптивны большей частью на уровне основных метаболических функций и поэтому микроскопически не проявляются. Успешная адаптация ферментных систем, мембран, дыхательных пигментов и т. п. к тем или иным условиям среды еще не говорит об идентичности этих систем у различных организмов, даже если внешние адаптивные признаки у них сходны. Для того чтобы выявить эти особенности в адаптации биохимических систем, Немова Н.Н. и Высоцкая Р.У. рассмотрели вначале те биохимические структуры и функции, которые абсолютно необходимы для всех живых систем и проявляют чувствительность к изменениям факторов среды. Это относится, прежде всего, к биохимическим адаптациям, направленным на:

Сохранение целостности и функциональной активности макромолекул (нуклеиновых кислот, ферментов, структурных и контрактильных белков) и надмолекулярных комплексов (хроматина, хромосом, рибосом, мембран);

Обеспечение организма источниками энергии и питательными веществами, используемыми для биосинтеза белков, нуклеиновых кислот, углеводов и липидов, составляющих ткани организма и являющихся запасами питательного материала;

Поддержание регуляторных механизмов обмена веществ и его изменений в зависимости от непостоянных условий среды обитания.

Перечисленные функции необходимы всем живым системам, в каких бы условиях они не находились. Поскольку метаболическая активность организмов находится в строгой зависимости от таких макромолекул, как ферменты и нуклеиновые кислоты, процессы адаптации должны сводиться к тому, чтобы функции макромолекул были такого типа и осуществлялись с такими скоростями, при которых жизненные процессы организма протекали бы удовлетворительно, несмотря на помехи со стороны окружающей среды. В процессе адаптации организм достигает векторного гомеостаза метаболических функций. Выражение векторный гомеостаз подчеркивает то, что в процессе адаптации к внешней среде, как скорости, так и направления метаболических реакций «настраиваются» таким образом, чтобы организм непрерывно получал необходимые ему продукты.

В работе Н.Н. Наумовой и Р.У. Высоцкой отмечено, что в действительности биохимическая адаптация часто является, крайним средством, к которому организм прибегает тогда, когда у него нет поведенческих или физиологических способов избежать неблагоприятного воздействия среды. Как правило, биохимическая адаптация - это не самый легкий путь, часто оказывается проще найти подходящую среду путем миграции, чем перестроить химизм клетки. Регуляция метаболизма осуществляется с помощью целой иерархии механизмов, заложенных в генах и реализующихся синтезом соответствующих белков.

Так же при рассмотрении биохимических адаптаций на уровне микросреды велика роль липидного окружения, в котором функционируют многие ферменты, в особенности, связанные с мембранами. Липиды, не будучи микромолекулами тоже могут подобно водной среде, создавать микроокружение, благоприятное для функционирования белков. Во время обсуждения процессов адаптации, протекающих с участием мембранных липидов и осмолитов, следует учитывать процессы, обеспечивающие нужную величину рН в непосредственном окружении ферментов. Выбор этой величины и буферных систем для ее поддержания был, вероятно важнейшей проблемой, которую пришлось решить живым организмам на заре клеточной эволюции. По мнению Н.Н. Наумовой и Р.У. Высоцкой это вытекает из того факта, что регуляция рН обнаруживается у всех исследованных к настоящему времени организмов.

1. Поддержание структурной целостности макромолекул (ферментов сократительных белков, нуклеиновых кислот и др.) при их функционировании в специфических условиях.

2. Достаточное снабжение клетки:

а) энергетической валютой - аденозинтрифосфатом (АТФ);

б) восстановительными эквивалентами, необходимыми для протекания процессов биосинтеза;

в) предшественниками, используемыми при синтезе запасных веществ (гликогена, жиров и т.п.), нуклеиновых кислот и белков.

3. Поддержание систем, регулирующих скорости и направления метаболических процессов в соответствии с потребностями организма и их изменениями при изменении условий среды.

Выделяют три типа механизмов биохимической адаптации.

1. Приспособление макромолекулярных компонентов клетки или жидкостей организма:

а) изменяются количества (концентрации) уже имеющихся типов макромолекул, например ферментов;

б) образуются макромолекулы новых типов, например новые изоферменты, которыми замещаются макромолекулы, ранее имевшиеся в клетке, но ставшие не вполне пригодными для работы в изменившихся условиях.

2. Приспособление микросреды, в которой функционируют макромолекулы. Сущность этого механизма состоит в том, что адаптивное изменение структурных и функциональных свойств макромолекул достигается путем видоизменения качественного и количественного состава окружающей эти макромолекулысреды (например, ее осмотической концентрации или состава растворенных веществ).

3. Приспособление на функциональном уровне. Его сущность состоит в регулировании функциональной активности макромолекул, ранее синтезированных клеткой.

Под стратегией адаптации понимают функционально-временную структуру потоков информации, энергии, веществ, обеспечивающую оптимальный уровень морфофункциональной организации биосистем в неадекватных условиях среды.

Можно выделить три варианта "стратегии" адаптивного поведения организма человека.

1. Первый тип (стратегия типа "спринтер"): организм обладает способностью мощных физиологических реакций с высокой степенью надежности в ответ на значительные, но кратковременные колебания во внешней среде. Однако такой высокий уровень физиологических реакций может поддерживаться относительно короткий срок. К длительным физиологическим перегрузкам со стороны внешних факторов, даже если они средней величины, такие организмы мало приспособлены.

2. Второй тип (стратегия типа "стайер"). Организм менее устойчив к кратковременным значительным колебаниям среды, но обладает свойством выдерживать длительное время физиологические нагрузки средней силы.

3. Наиболее оптимальным типом стратегии является промежуточный тип, который занимает среднее положение между указанными крайними типами.


Формирование стратегии адаптации генетически детерминировано, но в процессе индивидуальной жизни, соответствующего воспитания и тренировки их варианты могут подвергаться коррекции. Следует отметить, что у одного и того же человека разные гомеостатические системы могут иметь различные стратегии физиологической адаптации.

Установлено, что у людей с преобладанием стратегии первого типа (тип "спринтер") одновременное сочетание работы и восстановительных процессов выражено слабо и для указанных процессов требуется более четкая ритмичность (т.е. расчленение во времени).

У людей же с преобладанием стратегии 2-го типа (тип "стайер"), напротив, резервные возможности и степень быстрой мобилизации не высоки, однако рабочие процессы более легко сочетаются с процессами восстановления, что обеспечивает возможность длительной нагрузки.

Так, в условиях северных широт у людей с вариантами стратегии типа "спринтер" наблюдается быстрое истощение и нарушение липидно-энергетического обмена, что приводит к развитию хронических патологических процессов. В то же время у людей, относящихся к варианту стратегии "стайер", приспособительные реакции к специфическим условиям высоких широт наиболее адекватны и позволяют им длительное время находиться в этих условиях без развития патологических процессов.

В целях определения эффективности адаптационных процессов были разработаны определенные критерии и методы диагностики функциональных состояний организма.

Р.М. Баевским (1981) предложено учитывать пять основных критериев:

■ 1 - уровень функционирования физиологических систем;

■ 2 - степень напряжения регуляторных механизмов;

■ 3 - функциональный резерв;

■ 4 - степень компенсации;

■ 5 - уравновешенность элементов функциональной системы.

В качестве индикатора функционального состояния целостного организма может рассматриваться система кровообращения, в частности три ее свойства, с помощью которых можно оценить переход от одного функционального состояния к другому.

1. Уровень функционирования. Под ним следует понимать поддержание определенных значений основных показателей миокардиально-гемодинамического гомеостаза, таких, как ударный и минутный объем, частота пульса и АД.

2. Функциональный резерв. Для его оценки обычно применяют функциональные нагрузочные пробы, например ортостатическую или с физической нагрузкой.

3. Степень напряжения регуляторных механизмов, которая определяется показателями вегетативного гомеостаза, например степенью активации симпатического отдела вегетативной нервной системы и уровнем возбуждения вазомоторного центра.

Классификация функциональных состояний при развитии болезней адаптации (Баевский Р.М., 1980).

1. Состояние удовлетворительной адаптации к условиям окружающей среды. Для этого состояния характерны достаточные функциональные возможности организма, гомеостаз поддерживается при минимальном напряжении регуляторных систем организма. Функциональный резерв не снижен.

2. Состояние напряжения адаптационных механизмов. Функциональные возможности организма не снижены. Гомеостаз поддерживается благодаря определенному напряжению регуляторных систем. Функциональный резерв не снижен.

3. Состояние неудовлетворительной адаптации к условиям окружающей среды. Функциональные возможности организма снижены. Гомеостаз сохраняется благодаря значительному напряжению регуляторных систем либо благодаря включению компенсаторных механизмов. Функциональный резерв снижен.

4. Срыв (поломка) механизмов адаптации. Резкое снижение функциональных возможностей организма. Гомеостаз нарушен. Функциональный резерв резко снижен.

Дезадаптация и развитие патологических состояний происходит поэтапно.

Начальный этап пограничной зоны между здоровьем и патологией - это состояние функционального напряжения механизмов адаптации. Состояние напряжения адаптационных механизмов, не выявляемое при традиционном клиническом обследовании, следует относить к дозонологическим, т.е. предшествующим развитию заболевания.

Более поздний этап пограничной зоны - состояние неудовлетворительной адаптации. Для него характерно уменьшение уровня функционирования биосистемы, рассогласование отдельных ее элементов, развитие утомления и переутомления. Состояние неудовлетворительной адаптации является активным приспособительным процессом. Состояние неудовлетворенной адаптации может быть отнесено к преморбидным, поскольку значительное снижение функционального резерва позволяет при использовании функциональных проб выявить неадекватный ответ организма, указывающий на скрытую или начальную патологию.

С клинической точки зрения только срыв адаптации относится к патологическим состояниям, ибо он сопровождается заметными изменениями традиционно измеряемых показателей, таких, как частота пульса, ударный и минутный объем, АД и т.д.

По своим проявлениям болезни адаптации носят полиморфный характер, охватывая различные системы организма. Наиболее распространены болезни адаптации при длительном пребывании людей в неблагоприятных условиях (горная болезнь и т.д.). Поэтому для профилактики болезней адаптации используют методы увеличения эффективности адаптации.

Методы увеличения эффективности адаптации могут быть специфическими и неспецифическими.

К неспецифическим методам относятся: активный отдых, закаливание, средние физические нагрузки, адаптогены и терапевтические дозировки разнообразных курортных факторов, которые способны повысить неспецифическую резистентность, нормализовать деятельность основных систем организма.

Адаптогены - это средства, осуществляющие фармакологическую регуляцию адаптивных процессов в организме. По своему происхождению адаптогены могут быть разделены на две группы: природные и синтетические. Источниками природных адаптогенов являются наземные и водные растения, животные и микроорганизмы. К наиболее важным адаптогенам растительного происхождения относятся женьшень, элеутерококк, лимонник китайский, аралия маньчжурская, заманиха, шиповник и т.д. К препаратам животного происхождения относятся: пантокрин, получаемый из пантов марала; рантарин - из пантов северного оленя, апилак - из пчелиного маточного молочка.

Широкое применение получили вещества, выделенные из различных микроорганизмов и дрожжей (продигиоган, зимозан и др.). Высокой адаптогенной активностью обладают витамины. Многие эффективные синтетические соединения получены из природных продуктов (нефть, уголь и т.п.).

Специфические методы увеличения эффективности адаптации основаны на повышении резистентности организма к какому-либо определенному фактору среды - холоду, гипоксии и т.д. К ним относятся лекарственные средства, физиотерапевтические процедуры, специальные тренировки и т.д. (Гора Е.П., 1999).

Определение стресса

Стресс (англ. стресс – напряжение) неспецифическая реакция напряжения живого организма в ответ на любое сильное воздействие. Это состояние критической нагрузки, которое проявляется в виде специфического синдрома, слагающегося из неспецифических изменений внутри биологического объекта.

Концепция стресса и адаптационного синдрома, разработана канадским ученым Гансом Селье в 1936 году для человека.Механизм развития общего адаптационного синдрома и стресс-реакции по Г. Селье представлен на рисунке 2.

Рис. 2. Три фазы общего адаптационного синдрома (А) и основные пути формирования стресс-реакции (Б) (по Г. Селье)

В ответ на любой стрессовый фактор, нарушающий гомеостаз, развиваются ответные реакции двух типов:

1)специализированными реакциями со стороны организма, специфически реагирующей на этот раздражитель, в зависимости от его природы, присущими только данной системе;

2)в виде комплекса неспецифических изменений, таких как реакции напряжения или общего усилия организма приспособиться к изменившимся условиям, с помощью стрессреализующей адренергической и гипофизарно-адреналовойсистемы.

Общий адаптационный синдром â

üэто сложный процессструктурно-функциональнойперестройки, нацеленный на перепрограммирование адаптационных возможностей организма в целях решения новых задач, выдвигаемым средой;

üпроцесс, который способствует образованию новой структурно-функциональнойорганизации организма и более совершенного, соответствующего данным условиям, состояния гомеостаза;

üпроцесс, который приводит, в конечном итоге, к изменениям фенотипа.

Патологические процессы, развивающиеся при общем адаптационном синдроме

Катаболический эффект стресс-синдроманаправлен на стирание старых, утративших свое биологическое значение, структурных следов.

Десинхроноз – универсальная реакция, неотъемлемая часть общего адаптационного синдрома, процесс разрушения старого биоритмологического стереотипа, изменения прежних биологических ритмов для формирования нового ритмологического стереотипа.

Классификация стрессовых факторов:

Практически любой фактор среды может принимать экстремальный характер.

Различают: положительный и отрицательный стресс (дистресс).

Наиболее тяжелая форма дистресса – шок.

Стрессовые факторы классифицируются:

II. По влиянию на состояние организма: – (на обмен веществ, проницаемость мембран, биоритмы и т.д.);

III. По времени влияния: влияют периодически (сезонность и т.д.);эпизодически (пожары, наводнения и т.д.).

IV. По характеру вмешательства: оказывающие прямое влияние – перегревание, переохлаждение и т.д.); оказывающие косвенное влияние – фотопериодизм, биоритмы и т.д.

Выделяют уровни проявлений стресс-реакций:

Для I уровня проявления стресса характерны повреждения, не воспринимаемые невооруженным глазом, а также повреждения, выявляемые только при сравнении с контролем.Реакции I уровня сопровождаются увеличением или снижением ферментной активности, изменением обмена веществ и функционирования биомембран, количества и состояния пигментов, гормонов, изменением энергетического баланса.

Для проявлений II уровня характерны изменения размеров и формы, характер роста, некрозы, преждевременное старение, сокращение продолжительности репродуктивного возраста, изменение плодовитости.II уровню проявления стресса соответствуют поведенческие реакции: пространственное или временное избегание, использование конституционных особенностей тела, что проявляется изменением конфигурации тела и защитным цветом кожи окраской в виде меланизма. Сюда же относятся различные варианты биоритмологических реакций.

Можно выделить антропогенный стресс:

Øс одной стороны, это новые параметры среды обитания, обусловленные деятельностью человека (появление ксенобиотиков);

Øс другой – антропогенная модификация уже имеющихся природных факторов (искусственная радиоактивность).

Острый и хронический стресс, упругие и пластические стрессовые нагрузки

Стресс классифицируется по характеру начальных проявлений, скорости развития и продолжительности.

Острый стресс характеризуется: –внезапным началом,–острым (быстрым) развитием,

–небольшой продолжительностью.

Хронический стресс, при котором неблагоприятный фактор невысокой интенсивности воздействует длительно или часто повторяется, имеет:

–незаметное начало,–постепенное развитие,–длительное течение.

Острый стресс является упругой нагрузкой, вызывающей обратимые изменения, хронический стресс – пластической нагрузкой, приводящей к необратимым изменениям.

Варианты устойчивости к стрессу

Все многообразие устойчивости к стрессовым нагрузкам осуществляется на основе 2-хвариантов повышения устойчивости:

ªизбегания стресса: изменение поведения, биоритмы, особые жизненные циклы;

ªтолерантности к стрессу.

Толерантность бывает врожденной и приобретенной. Благодаря более высокой врожденной толерантности отдельных людей формируются механизмы устойчивости к стрессу, которые закрепляются в виде наследуемых признаков. Приобретенная толерантность является результатом адаптации к стрессовым воздействиям.

Стресс условно принято разделять на непсихогенный и психогенный (психоэмоциональный) (Исаев Л.К., Хитров Н.К., 1997).

Непсихогенный стресс формируется под влиянием разнообразных физических, в том числе механических, химических и биологических факторов или при недостатке необходимых для жизни соединений (О 2 , Н 2 О и т.д.), если степень этого дефицита опасна для жизни.

Психоэмоциональный стресс возникает под влиянием негативных социальных факторов, значимость которых в жизни современного человека постоянно нарастает.

Длительный психоэмоциональный стресс приводит к понижению функциональных возможностей центральной нервной системы и клинически проявляется развитием различных форм неврозов - неврастения, невроз навязчивых состояний, истерия. Сегодня психоэмоциональный стресс рассматривается как важнейший фактор риска возникновения гипертонической и гипотонической болезни, атеросклероза, ишемической болезни сердца, язвенной болезни желудка и двенадцатиперстной кишки, нейрогенных заболеваний кожи, эндокринных заболеваний и многих других (Тополянский В.Д., Струковская М.В., 1986).

Развитие стресса и его исходы во многом зависят от свойств организма, его нервной системы (в том числе вегетативной), эндокринных органов, особенно гипофиза и надпочечников, состояния иммунной системы, кровообращения и т.д. Важное значение в развитие стресса имеет степень тренированности, т.е. долговременной адаптации, формирующейся при многократном воздействии определенного стрессорного агента в оптимальном для этого режиме. Например, жители высокогорья высокорезистентны к кислородному голоданию (гипоксическому стрессу), спортсмены - к физическому стрессу и т.д. Важное значение в формировании устойчивости к стрессорным воздействиям имеют возраст, пол и конституция организма. В частности, новорожденные легко переносят гипоксию, женщины более резистентны к кровопотере, чем мужчины.

При обычном варианте развития при стрессе наблюдаются три стадии:

1) реакциятревоги (alarmreaction); мобилизацией защитных сил организмаактивация гипоталамо-гипофизарно-надпочеч-никовой и симпатоадреналовой систем следствием чего является усиленный выход из передней доли гипофиза адренокортикотропного гормона (АКТГ), стимуляция стероидной функции надпочечников и накопление в кровичеловека в первую очередь глюкокортикоидного гормона кортизона, угнетается секреция минералокортикоидов,наблюдается усиление высвобождения катехоламинов из мозгового слоя надпочечников и нейромедиатора норадреналина из симпатических нервных окончаний.. Наблюдается усиление распада гликогена в печени и в мышцах (стимуляция гликогенолиза), мобилизация липидов и белков (стимуляция глю-конеогенеза), возрастает уровень глюкозы, аминокислот и липидов в крови, активируются β-клетки инсулярного аппарата с последующим повышением содержания инсулина в крови. Происходит понижение деятельности щитовидной и половых желез, лимфопения, увеличивается количество лейкоцитов, эозинофилов, наблюдается уменьшение тимико-лимфатического аппарата, подавление анаболических процессов, главным образом снижение синтеза РНК и белка.Обычно усиливается функция кровообращения, происходит перераспределение крови в пользу мозга, сердца и усиленно работающих скелетных мышц, активизируется внешнее дыхание.

Очень важным является тот факт, что в органах и системах, не участвующих в приспособлении, например при длительном гипокси-ческом или физическом стрессе, усиливается катаболизм, могут развиваться атрофические и язвенные процессы; функция таких органов и систем снижается (пищеварительная, иммунная, репродуктивная), усиление каталитических процессов в тканях может приводить к снижению веса тела.Это перераспределение функциональной и пластической активности на первой стадии стресса способствует экономии энергозатрат организма, но может стать одним из механизмов патогенного действия стресса. Во время стадии тревоги неспецифическая сопротивляемость организма повышается, он делается более устойчивым к различным воздействиям.

2) стадиярезистентности (stageofresistance); в случае успешной экстренной адаптации, несмотря на продолжающееся действие стрессорного агента, нейроэндокринные отклонения исчезают, нормализуется обмен веществ и деятельность физиологических систем. Таким образом, организм вступает во вторую стадию стресса, или адаптации, для которой характерна повышенная устойчивость к экстремальному фактору.

В эндокринных железах нормализуется запас адаптивных гормонов (АКТГ, глюкокортикоидов), а в тканях восстанавливается уровень гликогена и липидов, сниженных в первую стадию стресса; происходит снижение инсулина в крови, что обеспечивает усиление метаболических эффектов кортикостероидов. Наблюдается активация синтетических процессов в тканях с последующим восстановлением нормального веса тела и отдельных его органов. С переходом в стадию резистентности неспецифическая сопротивляемость уменьшается, но возрастает устойчивость организма к тому фактору, которым был вызван стресс.

3) стадияистощения (stageofexhausion). В случае чрезмерно интенсивного или продолжительного действия стрессорного фактора, а также недостаточности регулирующих исполнительных систем формируется третья стадия стресса - истощение. В этой стадии преобладают главным образом явления повреждения, распада.

Гипофизарно-надпочечниковая и симпатоадреналовая системы угнетаются, и уровень соответствующих гормонов в железах внутренней секреции падает, уменьшается количество катехоламинов в мозговом слое надпочечников, в тканях и крови. В данном случае в организме начинают преобладать катаболические процессы, масса органов уменьшается, в них развиваются атрофические и дегенеративные изменения. Специфическая и неспецифическая резистентность организма снижается.

Довольно часто на этой стадии развиваются расстройства центрального кровообращения (аритмии, артериальная гипотония) и микроциркуляции (стаз, микротромбозы и геморрагии) (Исаев Л.К., Хит-ров Н.К., 1997).

В последние годы установлено, что в формировании стресса принимают участие не только стрессорные, но и антистрессорные нейроэндокринные механизмы. Более того, тяжесть стресса и его последствия зависят подчас не только от состояния гипофизарно-надпочечниковой и симпатоадреналовой системы, но и от способности антистрессорных механизмов обеспечивать адекватность реакции физиологических систем приспособления. В случае недостаточности антистрессорных механизмов стресс может стать настолько интенсивным, что в организме развиваются повреждения органов и систем.

Антистрессорные механизмы представлены на разных уровнях регуляции. В центральной нервной системе это ГАМК-ергические и серотонинергические нейроны, которые ослабляют симпатические влияния и уменьшают высвобождение кортиколиберина. В периферических органах уменьшение высвобождения норадреналина и снижение эффективности его действия на адренорецепторы обусловлено нейромедиатором ацетилхолином, некоторыми классами простаглан-динов, аденозинов и другими соединениями.

Значение стресса не является однозначным: в зависимости от конкретных условий он может иметь и позитивное и негативное биологическое значение для организма. Стресс сформирован в эволюции как общебиологическая приспособительная реакция живых существ на опасные и вредные факторы. Кроме того, стресс является первым этапом развития долгосрочной адаптации организма, если стрессор-ный фактор действует продолжительное время в тренирующем режиме (Меерсон Ф.З., 1988). Длительное, особенно периодическое, действие разнообразных гипоксических факторов (дефицит О 2, кро-вопотери, цианиды), гипогликемии, физического напряжения, гипотермии и т.д. вызывает тренирующий эффект. В результате на смену экстренной приходит долговременная адаптация организма. Вместе с тем стресс может стать фактором развития в организме патологических состояний.

Особенности непсихогенного стресса.

Опасные и вредные экологические факторы могут вызывать развитие стресса. Среди физических воздействий наиболее часто стрессорными агентами становятся резкие колебания барометрического давления, выходящие за рамки физиологических возможностей организма, колебания температуры, магнитные аномалии, механическая травма, воздействие пыли, электротравма, ионизирующее излучение и т.д. (Исаев Л.К., Хитров Н.К., 1997). Химические воздействия, нарушающие обмен веществ в тканях и вызывающие гипоксию, например, дефицит О 2 , воздействия СО (оксида углерода), нитросоединений и т.д. являются крайне опасными стрессорными факторами.

При действии непсихогенных экстремальных факторов возникновение различных форм патологии возможно на всех этапах формирования стрессорного состояния.

Во-первых реакция тревоги, напряжения может вообще не развиваться, если интенсивность вредного фактора настолько велика,что она превышает возможности систем приспособления организма. Так, при действии высокого дефицита О 2 , токсических концентраций СО 2 , дефицита глюкозы в крови практически сразу без первых двух фаз стресса возникает фаза истощения в форме соответственно гипоксической и гипогликемической комы. Аналогичная ситуация возникает при тяжелом облучении - лучевая кома, перегревании - тепловой удар и т.д. Подобные же состояния возникают в том случае, если интенсивность стрессорного фактора невелика, но имеется недостаточность систем регуляции, например недостаточность коры надпочечников или снижение активности симпатоадреналовой системы.

Во-вторых возможна ослабленная или чрезмерная реакция напряжения и соответственно слабая или неадекватно сильная активация гипофизарно-надпочечниковой и симпатоадреналовой систем. При недостаточной активности нейроэндокринных механизмов стресса, как и в первом случае, формируется быстрое истощение и развитие экстремальных состояний - обычно коллапса или комы. При избыточной активности указанных выше механизмов вследствие избытка катехоламинов могут развиваться некрозы миокарда, миокардиодистрофия, гипертензионные состояния, ишемические поражения почек, а в результате избытка кортикостероидов - язвенные поражения желудочно-кишечного тракта, иммунный дефицит со склонностью к инфекциям и ряд других расстройств (Василенко В.Х. и др., 1989).

В-третьих при действии крайне интенсивных патогенных факторов среды обитания после реакции тревоги, проявляющейся общим возбуждением, фаза резистентности не развивается, а сразу возникает истощение систем регуляции и угнетение физиологических функций. Такая последовательность характерна для шоковых состояний, при которых ведущее значение в угнетении функции ЦНС вегетативного отдела и эндокринной системы имеет чрезмерная афферентация, например болевая (травматический, ожоговый шок).

В-четвертых возможны ситуации, когда на действие стрессорного фактора кора надпочечников усиленно высвобождает не глюкокорти-коиды (кортизол, кортизон, кортикостерон), а минералокортикоиды (альдостерон, дезоксикортикостерон). Вероятно, это связано с нарушением биосинтеза кортикостероидов в коре надпочечников. В данном случае при повторяющихся стрессорных воздействиях возникает высокая склонность к развитию воспалительных и аллергических заболеваний, гипертензионных состояний, склеротических процессов в почках, вплоть до почечной недостаточности.

Виды адаптации биосистем к стрессу

Изменения при стрессовой нагрузке во времени разворачиваются в виде 5 последовательный стадий:

1 стадия – состояние устойчивого гомеостаза;

2 стадия – исходное состояние после стресса;

3стадия – избыточной реакции;

4стадия – стабилизированного состояния;

5стадия – состояние нового устойчивого гомеостаза.

Характеристика биосистем на 1-йстадии стресса

На первой стадии биосистемы всех уровней организации находятся в состоянии динамического равновесия -это здоровый, жизнеспособный организм.

Характеристика биосистем на 2-йстадии стресса

На второй стадии, именуемой "исходное состояние" непосредственно после действия острого или хронического стрессачаще всего регистрируются резко выраженные изменения в составе, структуре и функции. Иногда структурно-функциональная организация может оставаться без внешних изменений, но гомеостаз организма нарушен всегда

Изменения биосистем на 3-йстадии стресса

На организменном уровне избыточная реакция проявляется в виде активизации неадекватных, компенсаторно-приспособительных реакций (пролиферации, гиперреакций).

Изменения биосистем, соответствующие 4-йи5-йстадиям

Четвертая стадия – этап стабилизированного состояния.

На организменном уровне формируются адекватные адаптационные приспособительные реакции со стороны преимущественно специфических систем(сердечно-сосудистой,дыхательной, выделительной).

Пятая стадия характеризуется формированием нового состояния динамического равновесия (гомеостаза).

В случаях, когда действующий фактор чрезмерно силен или сложен, требуемая приспособительная реакция оказывается неосуществимой. Например, повышенная температура в сочетании с высокой относительной влажностью в более значительной степени нарушают терморегуляцию. В результате первоначальные нарушения гомеостаза остаются, а стимулируемый ими стресссиндром достигает чрезмерной интенсивности и длительности, превращаясь в инструмент повреждения и причину возникновения многочисленных стрессорных заболеваний.

Биологические ритмы

В любом явлении окружающей нас природы существует строгая повторяемость процессов: она является универсальным свойством и живой материи. Вся наша жизнь представляет собойпостоянную смену покоя и активной деятельности, сна и бодрствования,утомления от напряженного труда и отдыха.

Биологические ритмы (биоритмы) - регулярное, периодическое повторение во времени характера и интенсивности жизненных процессов, отдельных состояний или событий.

Биологические ритмы - фундаментальное свойство органического мира, обеспечивающее его способность к адаптации и выживанию в циклически меняющихся условиях внешней среды. Это осуществляется за счет ритмичного чередования процессов анаболизма и катаболизма (Оранский И.Е., 1988).

Изучением биоритмов живых систем, их связи с ритмами, существующими в природе, занимается относительно недавно возникшая наука - хронобиология (биоритмология), составной частью которой является хрономедицина.

Главными параметрами ритма являются период, МЕЗОР, амплитуда, акрофаза.

Рис. 2.1.1. Схематическое изображение ритма и его показатели:

Т - время. Обратная величина периода, в единицах циклов на единицу времени - частота ритма.М (МЕЗОР) - средний уровень показателя в течение одного биологического цикла.А (амплитуда) - расстояние от МЕЗОРа до максимума показателя. Акрофаза - момент времени, соответствующий регистрации максимального значения сигнала а время наибольшего спада процесса – как батифаза. .Количество циклов, совершающихся в единицу времени, называют частотой.. Помимо этих показателей, каждый биологический ритм характеризуется формой кривой , которую анализируют при графическом изображении динамики ритмически меняющихся явлений (хронограмма, фазовая карта и др.). Простейшая кривая, описывающая биоритмы, – это синусоида. Однако, как показывают результаты математического анализа, структура биоритма бывает, как правило, более сложной.

По степени зависимости от внешних условий биоритмы разделяют на экзогенные и эндогенные.

Экзогенные (внешние) ритмы зависят от ритмики географических и космических факторов (фотопериодизма, температуры окружающей среды, атмосферного давления, ритма космического излучения, гравитации и т. д.).

Эндогенные активные ритмы устанавливаются под влиянием постоянно действующих внешних условий, биологический эффект которых не выходит за границыадаптационно-компенсаторныхрезервов организма человека. автономные (син. спонтанные, самоподдерживающиеся, самовозбуждающиеся) колебания, обусловленные активными процессами в самой живой системе (к ним относится большинство Б. р.: многие микроритмы и все экологические ритмы).

В биоритме всегда присутствуют две компоненты - экзогенная и эндогенная. Эндогенный ритм непосредственно определяется генетической программой организма, которая реализуется через нервный и гуморальный механизмы.

Биоритмы имеют внутреннюю и внешнюю регуляцию. Внутренняя регуляция биоритмов определяется функционированием так называемых биологических часов.

Согласно современным представлениям, в организме действуют биологические часы трех уровней (Билибин Д.П., Фролов В.А., 2007).

Первый уровень связан с деятельностью эпифиза: ритмы находятся в строгой иерархической подчиненности основному водителю ритмов, расположенному в супрахиазматизматических ядрах гипоталамуса (СХЯ). Гормоном, доносящим информацию о ритмах, генерируемых СХЯ, до органов и тканей, является мелатонин (по химической структуре - индол), преимущественно продуцируемый эпифизом из триптофана. Мелатонин также продуцируется сетчаткой, цилиарным телом глаза, органами ЖКТ. Активация регуляторной деятельности эпифиза относительно биоритмов "запускается" сменой дня и ночи (входным "рецептором" являются в том числе и глаза, хотя и не только они).

Ритм продукции мелатонина эпифизом носит циркадианный характер и определяется СХЯ, импульсы из которого регулируют активность норадренергических нейронов верхних шейных ганглиев, чьи отростки достигают пинеалоцитов. Мелатонин является мессендже-ром не только основного эндогенного ритма, генерируемого СХЯ и синхронизирующего все остальные биологические ритмы организма, но также и корректором этого эндогенного ритма относительно ритмов окружающей среды. Следовательно, любые изменения его продукции, выходящие за рамки нормальных физиологических колебаний, способны привести к рассогласованию как собственно биологических ритмов организма между собой (внутренний десинхроноз), так и ритмов организма с ритмами окружающей среды (внешний десинхроноз).

Второй уровень биологических часов связан с супраоптической частью гипоталамуса, который с помощью так называемого субкомиссурального тела имеет связи с эпифизом. Через эту связь (а может быть, и гуморальным путем) гипоталамус получает "команды" от эпифиза и регулирует биоритмы далее. В эксперименте было показано, что разрушение супраоптической части гипоталамуса ведет к нарушению биоритмов.

Третий уровень биологических часов лежит на уровне клеточных и субклеточных мембран. По-видимому, какие-то участки мембран обладают хронорегуляторным действием. Об этом косвенно свидетельствуют факты о влиянии электрических и магнитных полей на мембраны, а через них и на биоритмы.

Таким образом, координирующую роль в синхронизации ритмов всех клеток многоклеточного организма играет гипоталамо-гипофизарная система (Билибин Д.П., Фролов В.А., 2007).

Внешняя регуляция биоритмов связана с вращением Земли вокруг своей оси, движением ее по околосолнечной орбите, с солнечной активностью, изменениями магнитного поля Земли и рядом других геофизических и космических факторов, причем среди экзогенных факторов, выполняющих функцию "датчиков времени", наиболее значимы свет, температура и периодически повторяющиеся социальные факторы (режим труда, отдыха, питания). Атмосферное давление и геомагнитное поле как датчики времени играют меньшую роль. Таким образом, у человека выделяется две группы внешних синхронизаторов - геофизические и социальные (Билибин Д.П.,Фролов В.А., 2007).


Многие животные и растения способны образовывать различные вещества, которые служат им для защиты от врагов и для нападения на другие организмы. Пахдше вещества клопов, яды змей, пауков, скорпионов, токсины растений относятся к такого рода приспособлениям.
Биохимическими адаптациями также является появление особой структуры белков и липидов у организмов, обитающих при очень высоких или низких температурах. Подобные особенности позволяют этим организмам существовать в горячих источниках или, наоборот, в условиях вечной мерзлоты.

Рис. 28. Мухи-журчалки на цветах


Рис. 29. Бурундук в состоянии зимней спячки

Физиологические адаптации. Эти адаптации связаны с перестройкой обмена веществ. Без них невозможно поддержание гомеостаза в постоянно меняющихся условиях внешней среды.
Человек не может долго обходиться без пресной воды из-за особенностей своего солевого обмена, но птицы и рептилии, проводящие большую часть жизни в морских просторах и пьющие морскую воду, приобрели специальные железы, которые позволяют им быстро избавляться от избытка солей.
Многие пустынные животные перед наступлением засушливого сезона накапливают много жира: при его окислении образуется большое количество воды.
Поведенческие адаптации. Особый тип поведения в тех или иных условиях имеет очень большое значение для выживания в борьбе за существование. Затаивание или отпугивающее поведение при приближении врага, запасание корма на неблагоприятный период года, спячка животных и сезонные миграции, позволяющие пережить холодный или засушливый период, - это далеко не полный перечень разнообразных типов поведения, возникающих в ходе эволюции как приспособления к конкретным условиям существования (рис. 29).


Рис. 30. Брачный турнир самцов антилопы

Следует отметить, что многие виды адаптаций формируются параллельно. Например, защитное действие покровительственной или предупреждающей окраски значительно повышается при сочетании её с соответствующим поведением. Животные, имеющие покровительственную окраску, в минуту опасности замирают. Предостерегающая окраска, наоборот, сочетается с демонстративным поведением, отпугивающим хищника.
Особую важность имеют поведенческие адаптации, связанные с продолжением рода. Брачное поведение, выбор партнёра, образование семьи, забота о потомстве - эти типы поведения являются врождёнными и видоспецифичными, т. е. у каждого вида существует своя программа полового и детско-родительского поведения (рис. 30-32).

В течение всей жизни организмы приспосабливаются к непрерывно меняющимся факторам внешней и внутренней среды. При этом непременным и единственным условием жизни живых организмов является постоянство внутренней среды, т.е. гомеостаз. Относительное динамическое постоянство среды организма и функционирование всех органов и систем, необходимое для сохранения жизни поддерживаются приспособительными или адаптивными реакциями организма.

Адаптация - это система внутреннего и взаимного прилаживания организма и вышестоящих биологических, экологических и других систем друг к другу при определяющей роли последних.

Различают следующие уровни адаптации:

субклеточный (усиление синтеза нуклеиновых кислот и белков, активация митохондриального аппарата клетки, как энергетической станции клетки).

клеточный

тканевой

отдельного органа

отдельной системы органов

целостного организма

групповой

популяционный

биоценотический

экосферный.

Не следует рассматривать понятие адаптации применимо только к отдельному организму, адаптация - это процесс поддержания всей экосферы в относительно стабильном состоянии, т.е. ее гомеостаза и отдельные организмы являются лишь звеньями этого механизма.

С физиологической и патофизиологической точек зрения понятия "приспособление", "норма" и "патология" должны даваться только в целях обоснования взгляда, что нормологический и патологический процессы являются различными качественными проявлениями одного и того же процесса - приспособления или адаптации. При этом патология не всегда является адаптивной аномалией, как и адаптивной нормой.

Исходя из этого все болезни являются результатом ошибок в адаптивных реакциях на внешние раздражители, с этой точки зрения большая часть болезней (нервные расстройства, ГБ, ЯБЖ и ЯБДК, некоторые типы ревматических, аллергические, сердечно-сосудистые заболевания и почечные болезни) являются болезнями адаптации, т.е. патологические процессы и болезни это всего лишь особенности приспособительных реакций.

Одним из путей сохранения гомеостаза является реагирование - развитие общих адаптационных реакций. Развитие этих реакций подчинено количественно-качественному принципу: на различное количество раздражителя организм отвечает качественно разными реакциями. При этом количество (мера) является общим в действии самых различных по качеству раздражителей и служит основой формирования нескольких стандартных ответов организма. Качество раздражителя накладывается на этот стандартный ответ как основа.

При этом следует различать меру и норму адаптации. Выделяют индивидуальную, строго детерминированную неповторимую норму и популяционную (видовую) норму, являющуюся в своей основе статистической, вероятностной (референтные величины). В медицинской диагностике, лечении и профилактики болезней необходимо учитывать обе нормы. Каждая конкретная норма строго индивидуальна и практически каждый человек представляет собой в том или ином отношении отклонение от нормы.

Согласно теории адаптационных реакций в зависимости от силы (меры) воздействия, в организме могут развиваться 3 типа адаптационных реакций:

реакция на слабые воздействия - реакция тренировки

реакция на воздействия средней силы - реакция активации

реакция на сильные, чрезвычайные воздействия - стресс-реакция по Г. Селье.

Реакция тренировки имеет 3 стадии: стадию ориентировки, стадию перестройки, стадию тренированности. В ЦНС преобладает охранительное торможение. В эндокринной системе вначале умеренно повышается активность глюко- и минералокортикоидных гормонов, а затем постепенно увеличивается секреция МК и нормализуется секреция ГК на фоне умеренно повышенной функциональной активности щитовидной и половых желез.

Реакция активации имеет 2 стадии: стадию первичной активации и стадию стойкой активации. В ЦНС преобладает умеренное, физиологическое возбуждение. В эндокринной системе отмечается увеличение секреции МК при нормальной секреции ГК и повышении функциональной активности щитовидной и половых желез. Повышение активности желез внутренней секреции выражено больше, чем при реакции тренировки, но не носит характера патологической гиперфункции. В обеих стадиях реакции активации повышается активная резистентность к повреждающим агентам различной природы.

Реакция активации подразделяется на спокойную активацию (СА) и повышенную активацию (ПА). ПА вызывается раздражителями, несколько большими по абсолютной величине, чем СА. При ПА наблюдаются большие сдвиги в АД, уровне ГК и энергетическом обмене.

Реакции тренировки и реакция адаптации - это те адаптационные реакции, которые встречаются в течение нормальной жизни организма.

Реакция стресса развивается в ответ на сверхсильные раздражители. Стресс, является неспецифической основой патологических процессов - синдромом болезни вообще, что способствует пониманию общности в течение различных патологических процессов, что помогает не только вскрыть патогенез, но и обосновать терапию целого ряда болезней. В настоящее время считают, что на основе стресса развивается около 10 000 заболеваний и более 100 тысяч симптомов болезней.

Стресс-теория Селье. Реакция организма не зависит от качества раздражителя, а зависит только от силы действия раздражителя. В первой стадии стресса - реакции тревоги, длящейся 24-48 часов происходит выброс в кровь А надпочечниками, стимуляция секреции АКТГ гипофиза, приводящая к повышению секреции ГК коры надпочечников. Угнетается секреция МК.

После реакции тревоги наступает стадия резистентности. В этой стадии устойчивость к внешним раздражителям повышена.

Если действие стрессора повторяется или он очень сильный, то стадия резистентности переходит в стадию истощения. Характер изменений близок к тому, что наблюдается при реакции тревоги: ГК преобладают над МК, снижена активность щитовидной и половых желез, иммунной системы.

В чем же биологический смысл первой стадии - реакции тревоги?

При встрече с сильным раздражителем основная задача - любой ценой получить энергию в короткие сроки, чтобы обеспечить необходимые условия для "битвы" или "бегства". Быстрый выброс энергии мобилизуется А и ГК даже невыгодным путем за счет распада жиров, углеводов и белков (прежде всего лимфоидной ткани). ГК в больших количествах угнетают тимус, лимфатические железы, иммунные реакции, а также участвуют в п/воспалительных реакциях, т.е. подавляют деятельность защитных систем организма. МК, оказывающие противоположное влияние на восп. процессы наоборот, угнетены. Эти изменения биологически целесообразны, т.к. защитный ответ, адекватный большой силе раздражителя (например, воспалительная реакция), мог бы привести организм к гибели. Если бы не развивалась иммунодепрессия, то при стрессе в условиях повреждения тканей в постстрессорный период могли бы возникнуть аутоиммунные заболевания. Поэтому вначале организму приходится не усиливать, а ослаблять свой ответ: в ответ на действие сильного раздражителя активность основных защитных систем не нарастает, а падает.

Все эти приспособительные изменения, происходящие в первую стадию стресса, могут вызывать тяжелые последствия в организме, особенно в условиях гипокинезии и гиподинамии, когда изменения, присущие стрессу, не реализуются на мышечную работу. Реакция тревоги - это пример того случая в организме, когда защита достигается ценой повреждения.

Но как представить себе, почему вслед за реакцией тревоги, т.е. на фоне угнетения защитных сил организма, формируется без каких-либо дополнительных воздействий стадия резистентности, т.е. происходит нормализация или даже повышение устойчивости? Известно, что в ЦНС под влиянием сильных раздражителей развивается резкое возбуждение, которое затем сменяется запредельным торможением - "крайней мерой защиты" по И.П. Павлову. При запредельном торможении чувствительность центральных нервных аппаратов понижается, благодаря этому падающие на организм другие сильные воздействия уже воспринимаются не как сильные, и тем самым устойчивость организма повышается. Т.о. переход стадии тревоги в стадию резистентности связан с запредельным торможением в ЦНС.

Стадия истощения еще в большей степени, чем стадия тревоги, является примером такого состояния, когда сохранение жизни достигается ценой повреждения. В наиболее тяжелых случаях эта стадия может привести к гибели.

Все реакции организма иметь нечто общее в ответной реакции на разные по качеству раздражители, сформировать основу для стандартного приспособительного ответа. Качество не может явиться такой основой, так как каждому раздражителю присуще свое качество. Общее, что характеризует действие самых различных раздражителей, - это количество, определяемое в отношении живого как степень биологической активности. Количество, мера является основой общности реакции организма на действие разных по качеству раздражителей, основой для развития в процессе эволюции биологически целесообразных комплексных, стандартных ответных реакций организма.

В основе механизмов неспецифических адаптационных реакций лежат общие принципы.

Эти комплексные реакции характеризуются, прежде всего, автоматизмом. Важнейшая роль в приспособлении принадлежит ЦНС - основной регулирующей системе организма. Кора ГМ с системой анализаторов принимает информацию от внешнего мира, подкорковые образования ГМ - от внутренней среды. Автоматическая регуляция постоянства внутренней среды осуществляется, главным образом, гипоталамической областью ГМ, являющейся центром интеграции вегетативного отдела НС и эндокринной системы - основных исполнительных звеньев, реализующих влияние ЦНС на внутреннюю среду организма. В гипоталамусе сочетаются нервный и гуморальный пути автоматической регуляции. В осуществлении адаптивных функций принимают участие все системы организма, при этом ГМ является высшим координаторным центром адаптационных процессов.

При действии слабых, пороговых (для общих реакций) раздражений развивается реакция тренировки. В ЦНС при этом преобладает охранительное торможение. Биологическая целесообразность этого - в снижении возбудимости, реактивности по отношению к слабому раздражителю, на который наиболее целесообразно не отвечать.

При действии раздражителей средней силы происходит развитие "реакции активации". В ГМ преобладает умеренное возбуждение. По-видимому, раздражение средней силы является оптимальным для возбуждения защитной деятельности организма. На такое раздражение наиболее целесообразно реагировать путем первичной активации защитных систем организма.

При действии сильных, чрезвычайных раздражителей (реакции стресс) в ЦНС развивается резкое возбуждение, сменяющееся запредельным торможением - крайней мерой защиты. Биологическая целесообразность этого - в снижении возбудимости, реактивности, так как адекватный чрезмерной силе ответ мог бы погубить организм. Затем, вследствие снижения реактивности, сильные воздействия уже не воспринимаются как сильные, развивается стадия резистентности. Снижение возбудимости при развитии запредельного торможения приводит к тому, что сильные раздражители (в случае повторения действия стрессора) уже не являются для организма сильными и вызывают развитие не стресса, а реакции активации или даже тренировки. Если же действие стрессора не повторяется и на организм падают обычные раздражители физиологических параметров, развивается чаще реакция тренировки, но возможно развитие и реакции активации. Если действие стрессора систематически повторяется или разовый стрессор был чрезвычайно сильным, стадия резистентности переходит в стадию истощения, которая может привести к гибели.

Таким образом, фактически нервная система организует патологический процесс. Все адаптационные реакции формируются в ЦНС, в частности в гипоталамусе. В ЦНС формируется и реакции стресс, являющейся неспецифической основой патологического процесса.

Там же формируются реакции тренировки и активации, являющиеся неспецифической основой нормы и повышающие неспецифическую резистентность организма, т.е. иными словами НС организует и защиту от патологических процессов.