В световой микроскоп можно разглядеть. Клетки в световом микроскопе

Свойства объёмного стекла увеличивать изображение были знакомы людям очень давно. Самая древняя линза, найденная археологами в Ираке близ города Нимруд, датируется VIII веком до нашей эры. Изобретатели этого полезного приспособления так и остались неизвестными. Неясно также, кто впервые применил его для создания микроскопа. Есть достоверные сведения, что комбинации из двух линз для своих приборов использовали знаменитые учёные XVI-XVII веков - Галилео Галилей, Джироламо Фракасторо, Кристиан Гюйгенс. История умалчивает, были эти приспособления изобретены до них, или нет. Но именно в ту эпоху оптика стала впервые применяться для изучения микромира.

Исследователи быстро поняли, что при использовании сразу нескольких линз их кратности увеличения предметов не складываются, а перемножаются друг на друга. И это даёт значительный эффект, позволяющий рассмотреть объекты микромира. Проблема состояла в том, что первые линзы были несовершенны и достаточно грубо обработаны. Поэтому изображение получалось с дефектами, которые увеличивались вместе с объектом исследований. Для решения этой проблемы разрабатывались микроскопы с единственной мощной линзой, один из которых позволил Антони Ван Левенгуку разглядеть растительную клетку. Лишь через полтора столетия многосоставные микроскопы, обладающие несколькими линзами, завоевали широкую популярность среди учёных. А с появлением электричества стала использоваться подсветка, значительно облегчившая процесс наблюдения. Именно так появился прибор, схожий по принципу работы с современным световым микроскопом.

Принцип работы

Световой микроскоп использует одно из неотъемлемых свойств луча света - преломление. Лучи подсветки отражаются в зеркальце, расходятся от объекта и параллельным пучком идут внутри тубуса, в котором размещены линзы. При помощи линз лучи преломляются, т.е. изменяют угол своего падения таким образом, что происходит их концентрация на сетчатке глаза. Таким способом объект наблюдения увеличивается и проступают его незаметные прежде детали.

Кратности увеличения

Окуляром микроскопа называется линза, в которую непосредственно смотрит глаз наблюдателя. Обычно для этих целей используются линзы с десятикратным увеличением. Ниже, в тубусе, располагается ряд объективов, каждый из которых имеет своё увеличение - 4, 10, 40 или же 100. Поскольку кратности перемножаются, то, в зависимости от выбранного объектива в сочетании с десятикратным окуляром, можно достигать кратности от 40 до 1000 соответственно.

Обычно наблюдение начинают с выбора четырёхкратного объектива, дающего наименьшее увеличение в 40 раз. Зачем? Дело в том, что для подробного рассмотрения какого-либо объекта нужно сперва этот объект найти. Осуществлять такой поиск при слишком большом увеличении неудобно. Поэтому при изучении микроскопического предмета, как правило, начинают от самого малого увеличения к большему. Объектив с маленьким увеличением позволяет гораздо быстрее фокусироваться, чем с большим.

Полезное и бесполезное увеличение

Увеличение бывает как полезным,так и бесполезным. В чём разница между тем и другим? Дело в том, что возможности любого светового микроскопа имеют предел. Теоретически возможно, используя множество линз, увеличить кратность прибора до бесконечности.

Но на практике наступает предел, после которого дальнейшее увеличение не делает видимыми новые детали объекта. До этого предела увеличение считается полезным, а после - бесполезным.

Разрешающая способность

Увеличивать изображение до бесконечности нет смысла потому, что разрешающая способность прибора конечна. Этой способностью называется расстояние между двумя близкими линиями, позволяющее видеть их раздельно. Для светового микроскопа такое расстояние достигает максимум 0,2 мкм. Именно этот фактор, а вовсе не конечные значения кратности, ограничивают область применения световой микроскопии. Более мелкие объекты доступны электронным и другим более современным микроскопам.

бъектив представляет собой цилиндр из металла (тубус), в который вмонтированы несколько линз. Его увеличение обозначают цифры.

Две или три линзы используются для окуляра. Предназначение расположенной между ними диафрагмой - фокусировка поля зрения. Нижней линзой фокусируются исходящие от объекта лучи, а само наблюдение происходит с помощью верхней.

В осветительном устройстве используются зеркало или электрический осветитель. Важной деталью является наличие конденсора, в состав которого входят две или три линзы. Подымаясь или опускаясь на кронштейне со специальным винтом, он может концентрировать или рассеивать свет, падающий на объект. Диаметр потока света изменяется специальной диафрагмой управляемый рычажком. Степень освещённости объекта регулирует кольцо, имеющее матовое стекло или светофильтр.

Составляющие механической системы микроскопа:

  • Подставка.
  • Коробка с микрометренными приспособлениями.
  • Тубус.
  • Тубусодержатель.
  • Винт грубой наводки.
  • Кроншетейн и винт перемещения конденсора.
  • Револьвер.
  • Предметный столик.

На предметном столике располагается объект наблюдения. Микрометренные механизмы предназначены для небольших перемещений тубусодержателя с тубусом, чтобы расстояние между объективом и объектом было оптимальным для наблюдения. Для более значительного смещения используют винты, осуществляющие грубую наводку. Функция револьвера - быстрая смена объективов. Это чрезвычайно удобное приспособление, которого не имели первые микроскопы, поэтому испытатели прошлого вынуждены были тратить на данную процедуру чрезвычайно много времени и усилий. Кронштейн, на котором держится конденсор, также способен подниматься и опускаться при помощи винта.

Обычно в световой микроскоп рассматривают микроскопические биологические объекты. Именно с его помощью была открыта живая клетка. Сегодня с помощью светового микроскопа можно исследовать целый ряд клеточных органелл, играющих важную роль в функционировании живого организма.

Именно такой микроскоп используется при преподавании школьного курса биологии.

В частности, при помощи этого прибора можно увидеть:

  • Ядро , являющееся основным её компонентом.
  • Стенку, образующую поверхностный клеточный аппарат, включая мембрану.
  • Хлоропласты, содержащие важный для растительной клетки хлорофилл, с помощью которого углеводородов из воды и углекислого газа.
  • Митохондриальные структуры и коплекс Гольджи, важные для клеточного метаболизма.
  • различные виды ресничек, жгутиков, вакуолей и светочувствительных органелл.

Новейшие достижения — самые мощные микроскопы

В 2006 году исследовательской группой во главе с немецким учёным Штефаном Хелем и аргентинцем Мариано Босси была завершена разработка оптического (светового) микроскопа, ставшего настоящим прорывом в технологиях исследований с помощью высокоточной оптики. Изобретение, которое назвали наноскопом, позволяет вести наблюдение за объектами размерами менее 10 нм. При этом получаются их высококачественные изображения в трёхмерном формате. Вероятно,это не предел - исследования в разных странах, направленных на повышение разрешающей способности светового микроскопа, продолжаются.

Ответами к заданиям 1–21 являются последовательность цифр, число или слово (словосочетание).

1

Рассмотрите предложенную схему направлений эволюции. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком

2

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны.

С помощью световой микроскопии в растительной клетке можно различить

1. рибосомы

2. вакуоль

3. микротрубочки

4. клеточную стенку

5. эндоплазматическую сеть

3

Сколько молекул ДНК содержится в ядре клетки после репликации, если в диплоидном наборе содержится 46 молекул ДНК? В ответе запишите только соответствующее число.

Ответ: ______

4

Все перечисленные ниже признаки, кроме двух, используют для описания процессов происходящих в интерфазе. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1. репликация ДНК

2. синтез АТФ

3. формирование ядерной оболочки

4. синтез всех видов РНК

5. спирализация хромосом

5

Установите соответствие между характеристиками и органоидами клетки: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца

ХАРАКТЕРИСТИКИ

А. замкнутая молекула ДНК

Б. окислительные ферменты на кристах

В. внутреннее содержимое – кариоплазма

Г. линейные хромосомы

Д. наличие хроматина в интерфазе

Е. складчатая внутренняя мембрана

ОРГАНОИДЫ

2. митохондрия

6

Сколько разных фенотипов образуется у потомков при скрещивании двух гетерозиготных растений душистого горошка с розовыми цветками (красный цвет неполно доминирует над белым)? В ответе запишите только количество фенотипов.

7

Все приведённые ниже характеристики, кроме двух, используют для описания мутационной изменчивости. Определите две характеристики, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны

1. образуется под воздействием рентгеновских лучей

2. обладает направленной модификацией

3. изменяется в пределах нормы реакции

4. формируется в результате нарушения мейоза

5. возникает внезапно у отдельных особей

8

Установите соответствие между примерами и способами размножения: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А. размножение фиалки листьями

Б. живорождение у акулы

В. деление надвое инфузории-туфельки

Г. почкование гидры

Д. вымётывание рыбами икры

Е. партеногенез пчёл

СПОСОБЫ РАЗМНОЖЕНИЯ

1. бесполое

2. половое

9

Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны.

Для грибов характерны следующие признаки:

2. имеют ограниченный рост

3. по типу питания – гетеротрофы

4. имеют корневые волоски

5. выполняют роль редуцентов в экосистеме

6. являются доядерными организмами

10

Установите соответствие между характеристиками и классами членистоногих: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ

А. наличие двух пар усиков

Б. перенос некоторыми видами опасных для человека заболеваний

В. внешнее пищеварение

Г. регулирование численности насекомых

Д. очищение водоёмов от органических остатков

Е. наличие четырёх пар конечностей

КЛАССЫ ЧЛЕНИСТОНОГИХ

1. Ракообразные

2. Паукообразные

11

Установите последовательность расположения систематических таксонов, начиная с наименьшего. Запишите в таблицу соответствующую последовательность цифр

2. Членистоногие

3. Двукрылые

4. Насекомые

5. Комар малярийный

6. Животные

12

Выберите три верно обозначенные подписи к рисунку «Череп человека». Запишите в таблицу цифры, под которыми они указаны.

1. лобная кость

2. затылочная кость

3. височная кость

4. теменная кость

5.нижнечелюстная кость

6. скуловая кость

13

Установите соответствие между органами человека и полостями тела, в которых эти органы расположены: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ОРГАНЫ ЧЕЛОВЕКА

А. сердце

В. лёгкие

Г. трахея

Д. печень

Е. селезёнка

ПОЛОСТИ ТЕЛА

1. грудная

2. брюшная

14

Установите последовательность прохождения сигналов по сенсорной зрительной системе. Запишите в таблицу соответствующую последовательность цифр.

1. роговица

2. зрительная зона коры мозга

3. стекловидное тело

4. зрительный нерв

5. хрусталик

6. сетчатка

15

Прочитайте текст. Выберите три предложения, в которых даны описания экологического критерия вида растения Пузырчатка обыкновенная. Запишите цифры, под которыми они указаны.

(1)Пузырчатка обыкновенная в основном встречается в средиземноморском регионе Европы и Африки. (2)Пузырчатка обыкновенная произрастает по канавам, прудам, стоячим и медленно текущим водоёмам, болотам. (3)Листья растений рассечены на многочисленные нитевидные доли, листья и стебли снабжены пузырьками. (4)Пузырчатка цветёт с июня по сентябрь. (5)Цветки окрашены в жёлтый цвет, сидят по 5–10 на цветоносе. (6)Пузырчатка обыкновенная – насекомоядное растение.

16

Установите соответствие между характеристиками и путями достижения биологического прогресса: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца

ХАРАКТЕРИСТИКИ

А. частные приспособления к условиям жизни

Б. возникновение классов животных

В. образование родов внутри семейств

Г. повышение уровня организации организмов

Д. возникновение отделов растений

ПУТИ ДОСТИЖЕНИЯ БИОЛОГИЧЕСКОГО ПРОГРЕССА

1. ароморфоз

2. идиоадаптация

17

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К естественным биогеоценозам относят

1. дубраву

6. пастбище

18

Установите соответствие между признаками и экосистемами: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИЗНАКИ

А. низкая саморегуляция

Б. разнообразие продуцентов

В. доминирование монокультуры

Г. короткие пищевые цепи

Д. разветвлённые сети питания

Е. видовое разнообразие животных

ЭКОСИСТЕМЫ

1. пшеничное поле

2. ковыльная степь

19

Установите последовательность стадий развития печёночного сосальщика, начиная с выделения яиц окончательным хозяином во внешнюю среду. Запишите соответствующую последовательность цифр.

1. образование цисты

2. внедрение личинки в тело малого прудовика

3. размножение личинки

4. выход личинки из яиц в воде

5. прикрепление хвостатой личинки к водным предметам

6. выход личинки из тела малого прудовика

20

Рассмотрите рисунок с изображением фазы сердечного цикла. Определите название этой фазы, её продолжительность и направление движения крови. Заполните пустые ячейки таблицы, используя термины и процессы, приведённые в списке. Для каждой ячейки, обозначенной буквой, выберите соответствующий термин или процесс из предложенного списка.

Список терминов и процессов:

1. поступление крови из предсердия в желудочек

2. поступление крови из желудочка в артерию

3. поступление крови из вен в предсердие

4. систола предсердия

6. систола желудочка

21

Проанализируйте таблицу «Время, необходимое для узнавания тест-изображения». Испытуемым демонстрировались цифры разных цветов и чёрно-белые изображения разной сложности. Фиксировалось время, необходимое испытуемому, чтобы распознать и назвать объект.

Выберите утверждения, которые можно сформулировать на основании анализа представленных данных

1. Чем проще объект, тем меньше света необходимо для его узнавания

2. Время узнавания цифр не зависит от их цвета.

3. Чёрные объекты распознаются быстрее цветных

4. Цветные цифры распознаются быстрее, чем сложное изображение

5. В сумерках распознавание цветного объекта ослабевает.

Часть 2.

Запишите сначала номер задания (22, 23 и т. д.), затем подробное решение. Ответы записывайте чётко и разборчиво.

В плодах некоторых сортов растений (апельсинов, мандаринов) отсутствуют семена. Какие методы классической селекции используются для получения таких сортов и как размножаются эти растения?

Показать ответ

Элементы ответа:

1. Классические методы селекции - для получения сортов растений без семян используют искусственный мутагенез с последющей гибридизацией растений.

2. Бессеменные сорта размножаются вегетативным путём. Например, вегетативное размножение этих сортов возможно путем прививания обработанных мутагенами почек (черенков) в крону немутантных растений.

Определите тип и фазу деления исходной диплоидной клетки, изображённой на схеме. Дайте обоснованный ответ.

Показать ответ

Элементы ответа:

1. Тип деления: Мейоз.

2. Фаза деления: Метафаза мейоза II.

3. На схеме изображен мейоз - метафаза II мейоза, так как хромосомы имеют по две хроматиды, но представлены одной парой (нет гомологичной пары). На схеме изображена метафаза, так хромосомы выстроены на экваторе клетки в одну линию.

Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых сделаны ошибки, исправьте их.

(1)Рыбы – обитатели водной среды. (2)По происхождению и особенностям строения рыб подразделяют на два класса: Хрящевые рыбы и Костные рыбы. (3)Заострённая спереди голова слита с туловищем, которое начинается от свободного края жаберных крышек и заканчивается хвостовым отделом. (4)У всех рыб жабры открываются снаружи тела жаберными щелями. (5)Все рыбы имеют плавательный пузырь. (6)Наиболее древние из костных рыб Кистепёрые рыбы. (7)Для них характерны мясистые, покрытые чешуёй плавники, развитая у взрослых рыб хорда, плохо развитый плавательный пузырь и другие особенности

Показать ответ

Элементы ответа:

Ошибки допущены в предложениях 3, 4, 5.

(3) Заострённая спереди голова слита с туловищем, которое начинается от свободного края жаберных крышек и заканчивается анальным плавником (или анальным отверстием).

(4) Не у всех рыб жабры открываются снаружи тела жаберными щелями, у костных и костно-хрящевых прикрыты жаберными крышками.

(5) Не все рыбы имеют плавательный пузырь.

Какие особенности строения сустава делают его прочным, подвижным и уменьшают трение между костями? Укажите четыре особенности. Ответ поясните.

Показать ответ

Элементы ответа:

1. Сустав покрыт суставной сумкой которая состоит из соединительной ткани и придаёт ему прочность.

2. Суставная головка соответствует суставной впадине, это обеспечивает подвижность сустава.

3. Суставы укреплены связками.

4. Внутри суставной сумки выделяется жидкость, уменьшающая трение.

В результате длительного применения ядохимикатов на полях могут наблюдаться вспышки роста численности вредителей. Объясните, почему могут происходить такие вспышки роста численности. Приведите не менее четырёх причин

Показать ответ

Элементы ответа:

1. В результате применения ядохимикатов погибли хищники, которые питались вредителями, поскольку в конце пищевой цепи накапливается высокая концентрация ядохимикатов.

2. В результате наследственной изменчивости (мутация) и естественного отбора вредители приобрели устойчивость к ядохимикатам и не умирают от них.

3. Благодаря высокой скорости размножения насекомые передают данные признаки следующим поколениям.

4. Насекомые, приобретшие устойчивость к ядохимикату, находятся в очень хороших условиях (обилие пищи, отсутствие конкурентов и хищников), поэтому происходит резкий рост их численности.

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ГААГЦТГТТЦГГАЦТ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Обоснуйте последовательность Ваших действий. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, находится искомая аминокислота

Показать ответ

Схема решения задачи включает:

1. По принципу комплементарности на основе ДНК находим нуклеотидную последовтельность тРНК нуклеотидная последовательность участка тРНК ЦУУ-ЦГА-ЦАА-ГЦЦ-УГА.

2. Нуклеотидная последовательность антикодона ЦАА (третий триплет) соответствует кодону на иРНК ГУУ.

3. По таблице генетического кода этому кодону соответствует аминокислота ВАЛ (валин), которую будет переносить данная тРНК.

Примечание. В данном типе заданий ключевыми словами являются: «все виды РНК синтезируются на ДНК-матрице». То есть нам необходимо найти именно тРНК - молекулы, состоящие из 70-90 нуклеотидов, которые свернуты определенным образом и напоминают по форме клеверный лист и переносят аминокислоты в биосинтезе белка.

Поэтому, сначала на ДНК по принципу комплементарности определяем участок тРНК. Затем находим тот триплет, который является центральным, именно его по принципу комплементарности переводим в иРНК и только теперь по таблице генетического кода находим аминокислоту.

При скрещивании растений душистого горошка с усиками на побегах и яркими цветками и растений без усиков на побегах с бледными цветками все гибриды F 1 получились с усиками и яркими цветками. В анализирующем скрещивании гибридов F 1 получили растения: 323 с усиками и яркими цветками, 311 без усиков и с бледными цветками, 99 с усиками и бледными цветками, 101 без усиков и с яркими цветками. Составьте схемы скрещиваний. Определите генотипы родителей и потомства в двух скрещиваниях. Объясните формирование четырёх фенотипических групп в потомстве.

Показать ответ

А, а - аллели, определяющие, соответственно, наличие и отсутствие усиков;

В, в - аллели, определяющие, соответственно, наличие ярких и бледных цветков.

Р1 ♀ ААВВ - с усиками на побегах и яркими цветками; ♂ аавв - без усиков на побегах с бледными цветками

F1 А?В? - с усиками и яркими цветками.

Гибрид из первого скрещивания - А?В? - с усиками и яркими цветками; аавв - без усиков на побегах с бледными цветками - т.к. анализирующее скрещивание, это скрещивание с рецессивной дигомозиготой.

323 с усиками и яркими цветками,

311 без усиков и с бледными цветками,

99 с усиками и бледными цветками,

101 без усиков и с яркими цветками.

Схема решения задачи включает:

1) Р1 ♀ ААВВ х ♂ аавв (так в первом поколении расщепления не было).

Гаметы ♀ АВ ♂ ав

100% дигетерозиготы с усиками и яркими цветами.

2) Анализирующее скрещивание. Т.к. в потомстве нарушается расщепление 1:1:1:1, значит гены АВ/ ав/ сцеплены - определяем это по числу некроссовертных особей (их должно быть больше 323 и 311).

Р2 ♀ AаBв × ♂ аaвв

Гаметы ♀АВ/, ♀ Ав, ♀аВ, ♀ ав/ и ♂ав/

F2 АВ//ав (323 с усиками и яркими цветками), ав//ав (311 без усиков и с бледными цветками), Аавв (99 с усиками и бледными цветками), Аавв (101 без усиков и с яркими цветками)

Таким образом, малочисленное потомство 99 с усиками и бледными цветками, 101 без усиков и с яркими цветками появилось в результате кроссинговера.

Генотипы родителей первого скрещивания: ААВВ, аавв.

Генотип потомства первого скрещивания: АаВв.

Генотипы родителей второго скрещивания: АВ//ав, ав//ав.

Генотипы потомства второго скрещивания: АВ//ав (323 с усиками и яркими цветками), ав//ав (311 без усиков и с бледными цветками), Аавв (99 с усиками и бледными цветками), Аавв (101 без усиков и с яркими цветками).

Формирование четырёх фенотипических групп в потомстве объясняется тем, что признаки с усиками-яркие цветы и без усиков-бледные цветы сцеплены, но сцепление неполное и у особи АаВв идет процесс кроссинговера.

Световая микроскопия - это самый древний и в тоже время один из распространенных методов исследования и изучения растительной и животной клетки. Предполагается, что начало изучения клетки было именно с изобретением светового оптического микроскопа. Главная характеристика светового микроскопа - это разрешение светового микроскопа, определяемое длиной световой волны. Предел разрешения светового микроскопа определяется длиной световой волны, оптический микроскоп используется для изучения структур, которые имеют минимальные размеры равные длине волны светового излучения. Многие составляющие клетки близки по своей оптической плотности и требуют предварительной обработки перед микрокопированием, в противном же случае они практически не видны в обычный световой микроскоп. Для того, чтобы сделать их видимыми, используют различные красители, обладающие определенной избирательностью. Используя избирательные красители, появляется возможность более подробно исследовать внутреннее строение клетки.

Например:

краситель гематоксилин окрашивает некоторые компоненты ядра в синий или фиолетовый цвет;

после обработки последовательно флороглюцином и затем соляной кислотой одревесневшие оболочки клеток становятся вишнево - красными;

краситель судан III окрашивает опробковевшие клеточные оболочки в розовый цвет;

слабый раствор йода в йодистом калии окрашивает крахмальные зерна в синий цвет».

При проведении микроскопических исследований большую часть тканей перед началом окраски фиксируют.

После фиксации клетки становятся проницаемыми для красителей, а структура клетки стабилизируется. Одним из наиболее распространенных фиксаторов в ботанике является этиловый спирт.

В ходе приготовления препарата для микрокопирования выполняют тонкие срезы на микротоме (приложение 1, рис.1). В этом приборе использован принцип хлеборезки. Для растительных тканей изготавливают чуть более толстые срезы, чем для животных, поскольку клетки растений относительно крупней. Толщина срезов растительных тканей для - 10 мкм - 20 мкм. Некоторые ткани слишком мягкие, чтобы из них сразу же можно было получить срезы. Поэтому после фиксации их заливают в расплавленный парафин или специальную смолу, которые пропитывают всю ткань. После охлаждения образуется твердый блок, который потом режется на микротоме. Это объясняется тем, что растительные клетки имеют прочные клеточные стенки, составляющие каркас ткани. Особенно прочны одревесневшие оболочки.

Пользуясь заливкой при приготовлении, срез возникает опасность нарушения структуры клетки, для предотвращения этого пользуются методом быстрого замораживания. При использовании этого метода обходятся обойтись без фиксации и заливки. Замороженную ткань режут на специальном микротоме - криотоме (приложение 1, рис. 2).

Замороженные срезы лучше сохраняют особенности естественной структуры. Однако их труднее готовить, а присутствие кристаллов льда нарушает некоторые детали.

фазово-контрастный (прилож. 1, рис. 3) и интерференционный микроскопы (прилож.1, рис.4) позволяют исследовать под микроскопом живые клетки с четким проявлением детали их строения. В этих микроскопах используют 2 пучка световых волн, которые взаимодействуют (налагаются) друг на друга, усиливая или уменьшая амплитуду волн, поступающих в глаз от разных компонентов клетки.

Световая микроскопия имеет несколько разновидностей.

Для изучения клеток разработано и применяется множество методов, возможности которых определяют уровень наших знаний в этой области. Успехи в изучении биологии клетки, включая наиболее выдающиеся достижения последних лет, как правило, связаны с применением новых методов. Поэтому для более полного понимания клеточной биологии необходимо иметь хотя бы некоторое представление о соответствующих методах исследования клетки.

Световая микроскопия

Самым древним и, вместе с тем, наиболее распространенным методом изучения клетки является микроскопия. Можно сказать, что и начало изучения клетки было положено изобретением светового оптического микроскопа.

Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм. Это означает, что если вы смотрите на две линии, которые находятся друг от друга на расстоянии меньше 0,1 мм, они сливаются в одну. Чтобы различить структуры, расположенные более тесно, применяют оптические приборы, например, микроскоп.

Но возможности светового микроскопа не безграничны. Предел разрешения светового микроскопа задается длиной световой волны, то есть оптический микроскоп может быть использован только для изучения таких структур, минимальные размеры которых сопоставимы с длиной волны светового излучения. Лучший световой микроскоп имеет разрешающую способность около 0.2 мкм (или 200 нм), то есть примерно в 500 раз улучшает человеческий глаз. Теоретически построить световой микроскоп с большим разрешением невозможно.

Многие компоненты клетки близки по своей оптической плотности и без специальной обработки практически не видны в обычный световой микроскоп. Для того, чтобы сделать их видимыми, используют различные красители, обладающие определенной избирательностью.

В начале XIX в. Возникла потребность в красителях для окрашивания текстильных тканей, что в свою очередь вызвало ускоренное развитие органической химии. Оказалось, что некоторые из этих красителей окрашивают и биологические ткани и, что было уж совсем неожиданно, часто предпочтительно связываются с определенными компонентами клетки. Использование таких избирательных красителей дает возможность более тонко исследовать внутреннее строение клетки. Приведем лишь несколько примеров:

· краситель гематоксилин окрашивает некоторые компоненты ядра в синий или фиолетовый цвет;

· после обработки последовательно флороглюцином и затем соляной кислотой одревесневшие оболочки клеток становятся вишнево - красными;

· краситель судан III окращивает опробковевшие клеточные оболочки в розовый цвет;

· слабый раствор йода в йодистом калии окрашивает крахмальные зерна в синий цвет.

Для проведения микроскопических исследований большую часть тканей перед окраской фиксируют. После фиксации клетки становятся проницаемыми для красителей, а структура клетки стабилизируется. Одним из наиболее распространенных фиксаторов в ботанике является этиловый спирт.

Фиксация и окрашивание не единственные процедуры, используемые для приготовления препаратов. Толщина большинства тканей слишком велика, чтобы их сразу можно было наблюдать при высоком разрешении. Поэтому выполняют тонкие срезы на микротоме. В этом приборе использован принцип хлеборезки. Для растительных тканей изготавливают чуть более толстые срезы, чем для животных, поскольку клетки растений обычно крупнее. Толщина срезов растительных тканей для световой микроскопии около 10 мкм - 20 мкм. Некоторые ткани слишком мягкие, чтобы из них сразу же можно было получить срезы. Поэтому после фиксации их заливают в расплавленный парафин или специальную смолу, которые пропитывают всю ткань. После охлаждения образуется твердый блок, который затем режется на микротоме. Правда, для растительных тканей заливка применяется значительно реже, чем для животных. Это объясняется тем, что растительные клетки имеют прочные клеточные стенки, составляющие каркас ткани. Особенно прочны одревесневшие оболочки.

Однако заливка может нарушить структуру клетки, поэтому применяют еще и другой метод, где эта опасность уменьшена? быстрое замораживание. Здесь можно обойтись без фиксации и заливки. Замороженную ткань режут на специальном микротоме (криотоме).

Замороженные срезы, приготовленные таким способом, имеют явное преимущество, поскольку в них лучше сохраняются особенности естественной структуры. Однако их труднее готовить, а присутствие кристаллов льда все же нарушает некоторые детали.

Микроскопистов всегда беспокоила возможность потери и искажения некоторых компонентов клетки в процессе фиксации и окраски. Поэтому полученные результаты проверяют другими методами.

Весьма заманчивой представлялась возможность исследовать под микроскопом живые клетки, но так, чтобы более отчетливо проявились детали их строения. Такую возможность дают особые оптические системы: фазово-контрастный и интерференционный микроскопы. Хорошо известно, что световые волны, подобно волнам воды, могут интерферировать друг с другом, увеличивая или уменьшая амплитуду результирующих волн. В обычном микроскопе, проходя через отдельные компоненты клетки, световые волны меняют свою фазу, хотя человеческий глаз этих различий не улавливает. Но за счет интерференции можно преобразовать волны, и тогда разные компоненты клетки можно отличить друг от друга под микроскопом, не прибегая к окрашиванию. В этих микроскопах используют 2 пучка световых волн, которые взаимодействуют (налагаются) друг на друга, усиливая или уменьшая амплитуду волн, поступающих в глаз от разных компонентов клетки.

Лекция 13. Микроскопия как метод исследования клеток и тканей.

1. Световая микроскопия.

2. Электронная микроскопия.

Современная цитология располагает многочисленными и разнообразными методами исследования, без которых было бы невозможно накопление и совершенствование знаний о строении и функциях клеток. В настоящей главе мы познакомимся лишь с основными, наиболее важными методами исследования.

Современный световой микроскоп представляет весьма совершенный прибор, который до сих пор имеет первостепенное значение в изучении клеток и их органоидов. С помощью светового микроскопа достигается увеличение в 2000-2500 раз. Увеличение микроскопа зависит от его разрешающей способности, т. е. наименьшего расстояния между двумя точками, которые видны раздельно.

Чем меньше частица, видимая в микроскоп, тем больше его разрешающая способность. Последняя, в свою очередь, определяется апертурой объектива (апертура - действующее отверстие оптической системы, определяемое размерами линз или диафрагмами) и длиной волны света.

Определение разрешающей способности микроскопа производится по формуле: а = 0,6 ,где а -- минимальное расстояние между двумя точками; -- длина волны света; п -- показатель преломления среды, находящейся между препаратом и первой, т. е. фронтальной, линзой объектива; a -- угол между оптической осью объектива и наиболее сильно отклоняющимся лучом, попадающим в объектив, или угол дифракции лучей.

Величина, указанная в знаменателе дроби (n sin a), постоянна для каждого объектива и называется его численной апертурой. Численная апертура, а также увеличение гравируются на оправе объектива. Соотношение между численной апертурой и минимальным разрешаемым расстоянием таково: чем больше численная апертура, тем меньше это расстояние, т. е. тем выше разрешение микроскопа.

Повышение разрешающей способности микроскопа, совершенно необходимое для исследования деталей строения клетки, достигается двумя путями:

1) увеличением численной апертуры объектива;

2) уменьшением длины волны света, которым освещается препарат.

С целью увеличения численной апертуры применяются иммерсионные объективы. В качестве жидкостей служат: вода (я=1,33), глицерин (я=1,45), кедровое масло (/1=1,51) по сравнению с п воздуха, равным 1.

Поскольку показатель преломления иммерсионных жидкостей больше 1, то численная апертура объектива повышается и в него могут попадать лучи, составляющие с оптической осью объектива больший угол, чем в том случае, когда между фронтальной линзой объектива и препаратом находится воздух.

Второй путь увеличения разрешающей способности микроскопа заключается в применении ультрафиолетовых лучей, длина волны которых меньше длины волны лучей видимого света.



Однако разрешающая способность микроскопа может быть повышена только до определенного предела, ограниченного длиной световых волн. Наименьшие частицы, которые хорошо видны в современный световой микроскоп, должны иметь величину больше "/з длины волны света. Это значит, что при использовании видимой части дневного света с длиной волны от 0,004 до 0,0007 мм в микроскоп будут видны частицы не меньше 0,0002-0,0003 мм. Следовательно, с помощью современных микроскопов удается рассмотреть те детали строения клетки, которые имеют величину не меньше 0,2-0,3 мк.

В настоящее время создано много разнообразных моделей световых микроскопов. Они обеспечивают возможность многостороннего исследования клеточных структур и их функции.

Биологический микроскоп. Биологический микроскоп (МБИ-1, МБИ-2, МБИ-3, МБР и др.) предназначен для изучения препаратов, освещаемых проходящим светом. Именно этот тип микроскопа наиболее широко распространен для изучения строения клеток и других объектов.

Однако с помощью биологического микроскопа удается детально изучить главным образом фиксированные и окрашенные препараты клеток. Большинство живых неокрашенных клеток в проходящем свете бесцветны и прозрачны (они не поглощают света), п их не удается рассмотреть подробно.

Фазовоконтрастная микроскопия . Контрастное изображение препаратов живых клеток, почти невидимых при наблюдении их в биологическом микроскопе, дает фазовоконтрастное устройство).

Метод фазового контраста основан на том, что отдельные участки прозрачного препарата отличаются от окружающей среды по показателю преломления. Поэтому проходящий через них свет распространяется с различной скоростью, т. е. испытывает смещение фаз, что выражается в изменении яркости. Фазовые изменения световых волн превращаются в световые колебания разной амплитуды, и получается воспринимаемое глазом контрастное изображение препарата, в котором распределение освещённостей соответствует распределяет широкие возможности в изучении живых клеток, их органоидов и включений в неповрежденном состоянии. Это обстоятельство играет важную роль, так как фиксация и окраска клеток, как правило, повреждает клеточные структуры.

Фазовоконтрастное устройство к биологическому микроскопу состоит из набора фазовых объективов, отличающихся от обычных наличием кольцеобразной фазовой пластинки, конденсора с набором кольцевых диафрагм и вспомогательного микроскопа, который увеличивает изображение кольцевой диафрагмы н фазовой пластинки при их совмещении.

Интерференционная микроскопия. Метод интерференционного контраста близок к методу фазовоконтрастной микроскопии и дает возможность получать контрастные изображения неокрашенных прозрачных живых клеток, а также вычислить сухой вес клеток. Специальный интерференционный микроскоп, применяемый для этих целей, устроен так, что пучок параллельных световых лучей, идущих от источника света, разделяется на две параллельные ветви -- верхнюю и нижнюю.

Нижняя ветвь проходит через препарат, и фаза ее светового колебания изменяется, а верхняя волна остается неизменной. За препаратом, т.е. в призмах объектива, обе ветви вновь соединяются и интерферируют между собой. В результате интерференции участки препарата, обладающие различной толщиной или неодинаковыми показателями преломления, окрашиваются в разные цвета и становятся контрастными и хорошо видимыми.

Флуоресцентная микроскопия . Подобно методу фазового контраста флуоресцентная (или люминесцентная) микроскопия дает возможность изучать живую клетку. Флуоресценцией называется свечение объекта, возбуждаемое поглощенной им световой энергией. Возбуждать флуоресценцию можно ультрафиолетовыми, а также синими н фиолетовыми лучами.

Целый ряд структур и веществ, содержащихся в клетках, обладает собственной (или первичной) флуоресценцией. Например, зеленый пигмент хлорофилл, содержащийся в хлоропластах растительных клеток, обладает характерной ярко-красной флуоресценцией. Довольно яркое свечение дают витамины А и B, некоторые пигменты бактериальных клеток; это позволяет распознавать отдельные виды бактерий.

Однако большинство веществ, содержащихся в клетках, не обладает собственной флуоресценцией. Такие вещества начинают светиться, обнаруживая разнообразную окраску, только после предварительной обработки люминесцентными красителями (вторичная флуоресценция). Эти красители носят название флуорохромов, К ним относятся флуоресцеин, акридин оранжевый, берберин-сульфат, флоксин и др. Флуорохромы обычно применяются в очень слабых концентрациях (например, 1:10000, 1:100000) и не повреждают живую клетку. Многие из флуорохромов избирательно окрашивают отдельные клеточные структуры и вещества в определенный свет. Так, акридин оранжевый при определенных условиях окрашивает дезоксирибонуклеиновую кислоту (ДНК) в зеленый, а рибонуклеиновую кислоту (РНК) в оранжевый цвета. Поэтому вторичная флуоресценция с акридином оранжевым сейчас один из важных методов изучения локализации нуклеиновых кислот в клетках различных организмов.

Кроме того, применение флуорохромов дает возможность получить контрастные, удобные для наблюдения препараты, на которых легко можно найти нужные структуры, распознать клетки бактерий и сосчитать их. Метод флуоресцентной микроскопии позволяет также изучить изменения клеток и отдельных внутриклеточных структур при разных функциональных состояниях, дает возможность различать живые и мертвые клетки.

При использовании в качестве источника флуоресценции синих и фиолетовых лучей света аппаратура состоит из обычного биологического микроскопа, низковольтной лампы (для микроскопа) е синим светофильтром, который пропускает лучи, возбуждающие флуоресценцию, и желтого светофильтра, убирающего излишние синие лучи. Применение же ультрафиолетовых лучей как источника флуоресценции требует специального флуоресцентного микроскопа с оптикой из кварца, пропускающего ультрафиолетовые лучи.

Поляризационная микроскопия . В основе метода поляризационной микроскопии лежит способность различных компонентов клеток и тканей к преломлению поляризованного света. Некоторые клеточные структуры, например нити веретена деления, миофибриллы, реснички мерцательного эпителия и др., характеризуются определенной ориентацией молекул и обладают свойством двойного лучепреломления. Это так называемые анизотропные структуры.

Исследование анизотропных структур производится с помощью поляризационного микроскопа. От обычного биологического микроскопа он отличается тем, что перед конденсором помещается поляризатор, а за препаратом и объективом помещены компенсатор и анализатор, позволяющие детально исследовать двойное лучепреломление в рассматриваемом объекте. При этом в клетках обычно наблюдаются светлые или окрашенные структуры, вид которых зависит от положения препарата по отношению к плоскости поляризации и от величины двойного лучепреломления.

Поляризационный микроскоп дает возможность определить ориентировку частиц в клетках и других структурах, четко видеть структуры с двойным лучепреломлением, а при соответствующей обработке препаратов можно сделать наблюдения над молекулярной организацией той или иной части клетки.

Микроскопия в темном поле. Изучение препаратов в темном ноле осуществляется с помощью особого конденсора. От обычного конденсора светлого поля темнопольный конденсор отличается тем, что пропускает только очень косые краевые лучи источника света. Поскольку краевые лучи имеют сильный наклон, они не попадают в объектив, и поле зрения микроскопа оказывается темным, а объект, освещенный рассеянным светом, кажется светлым.

На препаратах клеток обычно содержатся структуры разной оптической плотности. На общем темном фоне эти структуры четко видны благодаря их различному свечению, а светятся Они потому, что рассеивают попадающие на них лучи света (эффект Тиндаля).

В темном поле можно наблюдать разнообразные живые клетки.

Ультрафиолетовая микроскопия . Ультрафиолетовые (УФ) лучи глазом человека не воспринимаются, в силу чего непосредственное изучение клеток и их структур в них невозможно. Для целей исследования препаратов клеток в УФ лучах Е.М. Брумберг (1939) сконструировал оригинальный ультрафиолетовый микроскоп МУФ-1, и в настоящее время имеется несколько моделей этого микроскопа. Метод Е.М. Брумберга основан на том, что многие вещества, входящие в состав клеток, имеют характерные спектры поглощения УФ лучей.

При исследовании различных веществ в живых или фиксированных неокрашенных клетках и тканях в таком микроскопе препарат фотографируется трижды (на одной и той же пластинке) в лучах трех различных зон УФ спектра.

Для фотографирования длины УФ волн подбираются так, чтобы в каждой зоне находилась полоса поглощения какого-либо одного вещества, не поглощающего лучи в двух других зонах. Поэтому вещества, которые видны на фотографиях, оказываются разными на всех снимках.

Затем полученные снимки помещают в особый прибор, называемый хромоскопом. Один снимок рассматривают в синих, второй - в зеленых, а третий - в красных лучах.

Получаются три цветных изображения, которые в хромоскопе сводятся в одно, и на этом конечном изображении объекта различные вещества клетки оказываются окрашенными в разные цвета.

Но ультрафиолетовый микроскоп позволяет, не только фотографировать, а и производить визуальные наблюдения над тканями и клетками, для чего в нем имеется специальный флуоресцирующий экран.

С помощью этого микроскопа удаётся рассмотреть частички несколько меньших размеров, чем в обычный биологический микроскоп, благодаря тому что УФ лучи обладают значительно более короткой длиной волны, чем обычные световые лучи.

Поэтому разрешающая способность УФ микроскопа равна 0,11 мк, в то время как разрешающая способность биологического микроскопа при использовании обычного освещения равна 0,2-0,3 мк.

При помощи ультрафиолетового микроскопа проводится количественное определение поглощения УФ лучей нуклеиновыми кислотами и другими веществами, содержащимися в клетках, т. е. определяется количество этих веществ в одной клетке.

Микрофотографирование . Микрофотографирование разнообразных микроскопических препаратов проводят для того, чтобы получить их увеличенное изображение -- микрофотографию. На микрофотографиях удобно изучать отдельные структуры клеток и других объектов; микрофотографии представляют документы, очень точно отражающие все детали строения микроскопического препарата.

Фотографирование микроскопических препаратов производится с помощью специальных микрофотоустановок или микрофотонасадочных камер. Последние получили широкое распространение и пригодны для микрофотографирования с биологическим и любым другим микроскопом. Микрофотонасадочная камера - это фотоаппарат, у которого объектив удален и заменен микроскопом.

Оптическая система микроскопа выполняет роль объектива этого фотоаппарата. Имеется несколько типов микрофотонасадок. Очень удобны из них микрофотонасадки типа МФН-8.

Существует также и специальный биологический микроскоп МБИ-6 с постоянной фотокамерой. МБИ-6 позволяет производить обычное визуальное исследование препаратов и их фотографирование в проходящем и отраженном свете, в светлом и темном полях зрения, с фазовым контрастом и в поляризованном свете.

Большую роль в изучении процессов жизнедеятельности клетки играет микрокиносъемка. Для исследования деталей важнейших процессов, протекающих в клетке, таких, как деление, фагоцитоз, течения цитоплазмы и др., применяют цейтраферное устройство.

С помощью этого устройства можно производить либо ускоренную съемку, применяемую обычно при быстро протекающих процессах, либо замедленную съемку тех изменений в клетке, для которых характерно медленное течение.

Микрокиносъемка представляет собой не только метод, позволяющий детально исследовать разнообразные структуры и процессы в живой клетке, но и метод документации этих процессов и всех тех изменений, которые с ними связаны.