Что такое химический процесс? Процесс химический: суть и роль в природе. Химические процессы в технологии Взаимопревращение нитрогена и его соединений

О значительнейших вещах не будем судить слишком быстро.

Гераклит

Химический процесс (лат. «processus» - продвижение) представляет собой последовательную смену состояний вещества, тесную связь следующих друг за другом стадий развития, представляющую непрерывное единое движение. Учение о химических процессах - это область науки в которой существует наиболее глубокое взаимопроникновение физики химии и биологии. Химические процессы подразделяются на гомо- и гетерогенные (в зависимости от агрегатного состояния реагирующих систем) экзо- и эндотермические (в зависимости от количества выделяющейс и поглощающейся теплоты), окислительные, восстановительные (в зависимости от отношения к кислороду) и др.

Все процессы можно объединить в три большие группы:

  • 1. Самопроизвольные процессы, которые можно использовать для получения энергии или совершения работы. Условиями протекания самопроизвольных процессов являются: а) в изолированной системе, т.е. в системе для которой исключен любой материальный или энергетический обме с окружающей средой, сумма всех видов энергии есть величина постоянная; б) изменение энтальпии (тепловой эффект процесса, ДП) зависит только от вида и состояния исходных веществ и продуктов и не зависи от пути перехода. Такая зависимость носит название закона Гесса, сформулированного Гессом в 1840 г.
  • 2. Процессы, для осуществления которых требуется затрата энергии ил совершение работы.
  • 3. Самоорганизация химической системы, т.е. самопроизвольный процесс, проходящий без изменения энергетического запаса системы, совершается только в направлении, при котором порядок в системе уменьшается т.е. где беспорядок возрастает (Д5 > 0).

Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций. Процесс превращения одних вещест в другие называется химической реакцией. К условиям протекания химических процессов относятся прежде всего термодинамические факторы характеризующие зависимость реакций от температуры, давления п некоторых других условий. На скорость химической реакции также влияю следующие условия и параметры:

  • 1) природа реагирующих веществ (например, щелочные металлы растворяются в воде с образованием щелочей и выделением водорода и реакция протекает при обычных условиях моментально; цинк, железо и други реагируют медленно и с образованием оксидов, а благородные металл не реагируют вообще);
  • 2) температура (при повышении температуры на каждые 10 °С скорост реакции увеличивается в 2-4 раза - правило Вант-Гоффа). Со многим веществами кислород начинает реагировать с заметной скоростью уже пр обыкновенной температуре (медленное окисление). При повышении температуры начинается бурная реакция (горение);
  • 3) концентрация (для веществ в растворенном состоянии и газов скорость химических реакций зависит от концентрации реагирующих веществ Горение веществ в чистом кислороде происходит интенсивнее, чем в воздухе, где концентрация кислорода почти в 5 раз меньше). Здесь справедли закон действующих масс: при постоянной температуре скорость химической реакции прямо пропорционально произведению концентрации реагирующих веществ;
  • 4) площадь поверхности реагирования (для веществ в твердом состоянии - скорость прямо пропорциональна поверхности реагирующи веществ. Железо и сера в твердом состоянии реагируют достаточно быстр лишь при предварительном измельчении и перемешивании: горение хвороста и полена);
  • 5) катализатор (скорость реакции зависит от катализаторов, веществ которые ускоряют химические реакции, по сами при этом не расходуются Разложение бертолетовой соли и пероксида водорода ускоряется в присутствии оксида марганца (IV) и др.).

Для вступления в химическую реакцию необходимо преодолеть некоторый энергетический барьер, соответствующий энергии активации, возможность накопления которой сильно зависит от температуры. Многие реакции долгое время не могут закончиться. В таком случае говорят, чт реакция достигла химического равновесия. Химическая система находитс в состоянии равновесия, если выполняются следующие три условия:

  • 1) в системе не происходит энергетических изменений (АН = 0);
  • 2) не происходит изменений степени беспорядка (AS = 0);
  • 3) не изменяется изобарный потенциал (А/ = 0).

Вант-Гофф, используя термодинамический подход, классифицировал химические реакции, а также сформулировал основные положения химической кинетики. Химическая кинетика изучает скорости протекания химических реакций. Ле Шателье сформулировал закон смещени химического равновесия в химических реакциях под влиянием внешни факторов - температуры, давления и др. Согласно принципу Ле Шателье: если на систему, находящуюся в состоянии химического равновесия оказывается внешнее воздействие (изменяется температура, давление ил концентрация), то положение равновесия химической реакции смещаетс в ту сторону, которая ослабляет данное воздействие.

Химические реакции классифицируют по изменению качества исходных веществ и продуктов реакции на следующие виды:

  • - реакции соединения - реакции, при которых из нескольких вещест образуется одно вещество, более сложное, чем исходные;
  • - разложения - реакции, при которых из одного сложного веществ образуется несколько веществ;
  • - замещения - реакции, при которых атомы одного элемента замещаю атом другого элемента в сложном веществе и при этом образуются дв новых - простое и сложное;
  • - обмена - реакции, при которых реагирующие вещества обмениваются своими составными частями, в результате чего из двух сложны веществ образуются два новых сложных вещества.

По тепловому эффекту химические реакции можно подразделить на экзотермические - с выделением теплоты и эндотермические - с поглощением теплоты. С учетом явления катализа реакции могут быть каталитические - с применением катализаторов и иекаталитические - бе применения катализаторов. По признаку обратимости реакции деля на обратимые и необратимые.

Оствальд, исследуя условия химического равновесия, пришел к открытию явления катализа. Оказалось, что в большой степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий. Явление катализа - селективного ускорения химических процессов в присутстви веществ (катализаторов), которые принимают участие в промежуточны процессах, но регенерируются в конце реакции, широко используетс в промышленности. Например, промышленное получение аммиака, контактный способ производства серной кислоты и многие другие. Впервы синтез аммиака был осуществлен в 1918 г. на основе работ Габера, Бош и Митташа с помощью катализатора, представляющего собой металлическое железо с добавками окисей калия и алюминия, при температуре 450-550 °С и давлении 300-1000 атм. В настоящее время большое внимание уделяют применению металлорганических и металлокомплексны катализаторов, отличающихся высокой селективностью и избирательностью действия. Тот же самый процесс синтеза аммиака при использовании метал л органического катализатора удалось осуществить при обычно температуре (18 °С) и нормальном атмосферном давлении, что открывае большие перспективы в производстве минеральных азотных удобрений Особенно велика роль катализа в органическом синтезе. Крупнейши успехом в этом направлении надо признать получение искусственног и синтетического каучука из этилового спирта, осуществленное советски академиком С. В. Лебедевым в 20-х гг. XX в.

Ферменты, или биокатализаторы, играют исключительную роль в биологических процессах и в технологии веществ растительного и животного происхождения, а также в медицине. Сегодня известно свыше 750 ферментов, и их число ежегодно увеличивается. Ферменты являются бифункциональными и полифункциональными катализаторами, так как здесь имее место согласованное воздействие двух или нескольких групп катализаторо различной природы в составе активного центра фермента на поляризаци определенных связей субстрата. Эта же концепция лежит в основе каталитического действия фермента и теории кинетики действия ферментов Главное отличие ферментов от других катализаторов заключается в исключительно высокой активности и резко выраженной специфичности.

Самоорганизация химических систем в биологические, их единство и взаимосвязь подтверждает синтез органических соединений из неорганических. В 1824 г. немецкий химик Ф. Велер, ученик Берцелиуса, впервые получи из неорганического дициана МССЫ при нагревании его с водой щавелеву кислоту НООС-СООН - органическое соединение. Таким же образо из цианистого аммония было получено новое органическое вещество -мочевина (карбамид). В 1854 г. во Франции М. Бертло синтетическим путе получил жир. Наибольшим успехом химии в 50-60 гг. XX в. явился первы синтез простых белков - гормона инсулина и фермента рибонуклеазы.

О значительнейших вещах не будем судить слишком быстро.

Гераклит

Химический процесс (от лат. processus - продвижение) представляет собой последовательную смену состояний вещества, тесную связь следующих друг за другом стадий развития, представляющую непрерывное, единое движение. Учение о химических процессах - это область науки, в которой существует наиболее глубокое взаимопроникновение физики, химии и биологии. Химические процессы подразделяются на: гомо- и гетерогенные (в зависимости от агрегатного состояния реагирующих систем), экзо- и эндотермические (в зависимости от количества выделяющейся и поглощаемой теплоты), окислительные, восстановительные (в зависимости от отношения к кислороду) и др.

Все процессы, которые протекают вокруг нас, можно объединить в три большие группы.

1. Самопроизвольные процессы, которые можно использо
вать для получения энергии или совершения работы. Условиями
протекания самопроизвольных процессов или законами термо
динамики, характеризуемыми их, являются: а) в изолированной
системе, т. е. в системе, для которой исключен любой материаль
ный или энергетический обмен с окружающей средой, сумма
всех видов энергии есть величина постоянная; б) изменение
энтальпии (тепловой эффект процесса, АН) зависит только от
вида и состояния исходных веществ и продуктов и не зависит
от пути перехода. Он носит название закона Гесса и сформули
рован им в 1840 г.

2. Процессы, для осуществления которых требуется затрата
энергии или совершение работы.

3. Самоорганизация химической системы, т. е. самопроиз
вольный процесс, проходящий без изменения энергетического
запаса системы, совершается только в направлении, при котором


порядок в системе увеличивается, т. е. где энтропия уменьшается.

Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций. Процесс превращения одних веществ в другие называется химической реакцией. К условиям протекания химических процессов относятся прежде всего термодинамические факторы, характеризующие зависимость реакций от температуры, давления и некоторых других условий. На скорость химической реакции также влияют следующие условия и параметры:

1) природа реагирующих веществ (например, щелочные металлы растворяются в воде с образованием щелочей и выделением водорода и реакция протекает при обычных условиях моментально, а цинк, железо и другие реагируют медленно и с образованием оксидов, а благородные металлы не реагируют вообще);

2) температура. При повышении температуры на каждые 10 °С скорость реакции увеличивается в 2-4 раза (правило Вант-Гоффа). Со многими веществами кислород начинает реагировать с заметной скоростью уже при обыкновенной температуре (медленное окисление). При повышении температуры начинается бурная реакция (горение);

3) концентрация. Для веществ в растворенном состоянии и газов скорость химических реакций зависит от концентрации реагирующих веществ. Горение веществ в чистом кислороде происходит интенсивнее, чем в воздухе, где концентрация кислорода почти в 5 раз меньше. Здесь справедлив закон действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ;

4) площадь поверхности реагирования. Для веществ в твердом состоянии скорость прямо пропорциональна поверхности реагирующих веществ. Железо и сера в твердом состоянии реагируют достаточно быстро лишь при предварительном измельчении и перемешивании: горение хвороста и полена;


5) катализатор. Скорость реакции зависит от катализаторов, веществ которые ускоряют химические реакции, но сами при этом не расходуются. Разложение бертолетовой соли и пероксида водорода ускоряется в присутствии оксида марганца (IV) и др.

Для вступления в химическую реакцию необходимо преодолеть некоторый энергетический барьер, соответствующий энергии активации, возможность накопления которой сильно зависит от температуры. Многие реакции долгое время не могут закончиться. В таком случае говорят, что реакция достигла химического равновесия. Химическая система находится в состоянии равновесия, если выполняются следующие три условия:

1) в системе не происходит энергетических изменений ( Н = 0);

2) не происходит изменений степени беспорядка (, S = 0);

3) не изменяется изобарный потенциал ( J = 0).

Вант-Тофф, используя термодинамический подход, классифицировал химические реакции, а также сформулировал основные положения химической кинетики. Химическая кинетика изучает скорости протекания химических реакций. Ле Шателье сформулировал закон смещения химического равновесия в химических реакциях под влиянием внешних факторов - температуры, давления и др. Согласно принципу Ле Шателье, если на систему, находящуюся в состоянии химического равновесия, оказывается внешнее воздействие (изменяется температура, давление или концентрация), то положение равновесия химической реакции смещается в ту сторону, которая ослабляет данное воздействие.

Химические реакции классифицируют по изменению качества исходных веществ и продуктов реакции на следующие виды:

реакции соединения - реакции, при которых из нескольких веществ образуется одно вещество, более сложное, чем исходные;

реакции разложения - реакции, при которых из одного сложного вещества образуется несколько веществ;

реакции замещения - реакции, при которых атомы одного элемента замещают атом другого элемента в сложном веществе и при этом образуются два новых - простое и сложное;

реакции обмена - реакции, при которых реагирующие вещества обмениваются своими составными частями, в результате


чего из двух сложных веществ образуются два новых сложных вещества.

По тепловому эффекту химические реакции можно подразделить на экзотермические - с выделением теплоты и эндотермические - с поглощением теплоты. С учетом явления катализа реакции могут быть каталитические - с применением катализаторов и некаталитические - без применения катализаторов. По признаку обратимости реакции делят на обратимые и необратимые.

В. Оствальд, исследуя условия химического равновесия, пришел к открытию явления катализа. Оказалось, что в большой степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий. Явление катализа - селективного ускорения химических процессов в присутствии веществ (катализаторов), которые принимают участие в промежуточных процессах, но регенерируются в конце реакции, широко используется в промышленности, например фиксация азота и водорода, контактный способ производства серной кислоты и многие другие. Впервые синтез аммиака был осуществлен в 1918 г. на основе работ Габера, К. Боша и А. Митташа с помощью катализатора, представляющего собой металлическое железо с добавками окисей калия и алюминия, при температуре 450-550 °Си давлении 300-1000 атмосфер. В настоящее время большое внимание уделяют применению металлоорганических и металлокомплексных катализаторов, отличающихся высокими селективностью и избирательностью действия. Тот же самый процесс синтеза аммиака при использовании металлоорганического катализатора удалось осуществить при обычной температуре (18 °С) и нормальном атмосферном давлении, что открывает большие перспективы в производстве минеральных азотных удобрений. Особенно велика роль катализа в органическом синтезе. Крупнейшим успехом в этом направлении надо признать получение искусственного синтетического каучука из этилового спирта, осуществленное советским академиком С. В. Лебедевым в 20-х годах XX века.


Ферменты, или биокатализаторы, играют исключительную роль в биологических процессах и технологии веществ растительного и животного происхождения, а также в медицине. В настоящее время известно свыше 750 ферментов, и их число ежегодно увеличивается. Ферменты являются бифункциональными и полифункциональными катализаторами, так как здесь имеет место согласованное воздействие двух или нескольких групп катализаторов различной природы в составе активного центра фермента на поляризацию определенных связей субстрата. Эта же концепция лежит в основе каталитического действия фермента и теории кинетики действия ферментов. Главное отличие ферментов от других катализаторов заключается в исключительно высокой активности и ярко выраженной специфичности.

Самоорганизация химических систем в биологические, их единство и взаимосвязь подтверждает синтез органических соединений из неорганических. В 1824 г. немецкий химик Ф. Велер, ученик Берцелиуса, впервые получил из неорганического дициана N-C-C-N при нагревании его с водой щавелевую кислоту НООС-СООН - органическое соединение. Также было получено новое органическое вещество - мочевина (карбамид) из цианистого аммония. В 1854 г. во Франции М. Бертло синтетическим путем получил жир. Наибольшим успехом химии 50-60-х гг. XX в. явился первый синтез простых белков - гормона инсулина и фермента рибонуклерозы.

Выпуск 6

Химические и физические процессы

В химической лаборатории Академии занимательных наук юных телезрителей приветствует профессор Дмитрий Иванович. Пришла пора разобраться, чем отличаются химические и физические процессы.

В ходе химических процессов создаются вещества, которых ранее не было. Эти вещества получаются из каких-то исходных веществ и отличаются от них своими свойствами. В этом смысле химические и физические процессы совершенно различны. Ведь при физических процессах новых веществ не получается. Просто вещества меняют свою массу, агрегатное состояние, объём и т.д. Само вещество остаётся тем же самым, что и было. Примерами физических процессов являются растворение и кристаллизация, замерзание и испарение воды. При всех этих явлениях, вещество лишь изменяет свою форму, оставаясь тем же самым. Например, горение это химический процесс, потому что при горении (в процессе окисления), например, газа метана, возникают новые вещества — оксид углерода и водяной пар. Химические реакции, часто сопровождаются поглощением или выделением теплоты, изменением окраски веществ.

Далее в передаче профессор расскажет об удивительном приборе - штормглассе. С помощью этого прибора можно предсказывать изменения погоды. Дмитрий Иванович не только расскажет о нём, но и покажет, каким образом можно изготовить штормгласс. В завершение передачи Дмитрий Иванович раскроет секрет изготовления теннисных мячиков. Оказывается, в этом деле не обойтись без химии.

Химические реакции происходят при смешении или физическом контакте реагентов самопроизвольно, при нагревании, участии катализаторов (катализ), действии света (фотохимические реакции), электрического тока (электродные процессы), ионизирующих излучений (радиационно-химические реакции), механического воздействия (механохимические реакции), в низкотемпературной плазме (плазмохимические реакции) и т. п. Самопроизвольное превращение веществ осуществляется при условии, что они обладают энергией , достаточной для преодоления потенциального барьера, разделяющего исходное и конечное состояния системы (Энергия активации).

Классификация

Существует большое количество признаков, по которым можно классифицировать химические реакции.

По фазовому составу реагирующей системы

  • Гомогенные гомофазные реакции.
В реакциях такого типа реакционная смесь является гомогенной, а реагенты и продукты принадлежат одной и той же фазе. Примером таких реакций могут служить реакции ионного обмена, например, нейтрализация кислоты и щелочи в растворе:

NaOH (р.) + HCl (р.) → NaCl (р.) + H 2 O

  • Гетерогенные гетерофазные реакции
В этом случае реагенты находятся в разном фазовом состоянии, продукты реакции также могут находится в любом фазовом состоянии. Реакционный процесс протекает на границе раздела фаз. Примером может служить реакция солей угольной кислоты (карбонатов) с кислотами Бренстеда:

CaCO 3 (т.) + 2HCl (р.) → CaCl 2 (р.) + CO 2 (г.) + H 2 O(ж.)

  • Гетерогенные гомофазные реакции
Такие реакции протекают в пределах одной фазы, однако реакционная смесь является гетерогенной. Например, реакция образования хлорида аммония из газообразных хлороводорода и аммиака:

NH 3 (г.) + HCl (г.) → NH 4 Cl (т.)

  • Гомогенные гетерофазные реакции
Реагенты и продукты в такой реакции существуют в пределах одной фазы, однако реакция протекает на поверхности раздела фаз. Примером таких реакций являются некоторые гетерогенно-каталитические реакции, например, реакция синтеза аммиака из водорода и азота :

По изменению степеней окисления реагентов

В данном случае различают

  • Окислительно-восстановительные реакции,
в которых атомы одного элемента (окислителя) восстанавливаются , то есть понижают свою степень окисления , а атомы другого элемента (восстановителя) окисляются , то есть повышают свою степень окисления . Частным случаем окислительно-восстановительных реакция являются реакции диспропорционирования, в которых окислителем и восстановителем являются атомы одного и того же элемента, находящиеся в разных степенях окисления. Пример окислитильно-восстановительной реакции - горение водорода (восстановитель) в кислороде (окислитель) с образованием воды :

2H 2 + O 2 = 2H 2 O

Пример реакции диспропорционирования - реакция разложения нитрата аммония при нагревании. Окислителем в данном случае выступает азот (+5) нитрогруппы, а восстановителем - азот (-3) катиона аммония:

NH 4 NO 3 = N 2 O + 2H 2 O (до 250 °C)

  • Не окислительно-восстановительные реакции - соответственно, реакции, в которых не происходит изменения степеней окисления атомов, например, указанная выше реакция нейтрализации.

По тепловому эффекту реакции

Все реакции сопровождаются тепловыми эффектами. При разрыве химических связей в реагентах выделяется энергия, которая, в основном, идет на образование новых химических связей. В некоторых реакциях энергии этих процессов близки, и в таком случае общий тепловой эффект реакции приближается к нулю. В остальных случаях можно выделить

  • экзотермические реакции,
которые идут с выделением тепла, (положительный тепловой эффект) например, указанное выше горение водорода
  • эндотермические реакции,
в ходе которых тепло поглощается (отрицательный тепловой эффект) из окружающей среды.

Тепловой эффект реакции (энтальпию реакции, Δ r H), часто имеющий очень важное значение, можно вычислить по закону Гесса , если известны энтальпии образования реагентов и продуктов. Когда сумма энтальпий продутов меньше суммы энтальпий реагентов (Δ r H < 0) наблюдается выделение тепла , в противном случае (Δ r H > 0) - поглощение .

По типу превращений реагирующих частиц

  • соединения: 2Cu + O 2 = 2CuO,
  • разложения: 2HgO = 2Hg + O 2 ,
  • замещения: Fe + CuSO 4 = FeSO 4 + Cu,
  • обмена: NaCl + H 2 SO 4 = HCl + NaHSO 4 .

Химические реакции всегда сопровождаются физическими эффектами: поглощением и выделением энергии, например в виде теплопередачи, изменением агрегатного состояния реагентов, изменением окраски реакционной смеси и др. Именно по этим физическим эффектам часто судят о протекании химических реакций.

Химические процессы, протекающие в веществе, отличаются и от физических процессов, и от ядерных превращений. В физических процессах участвующие вещества сохраняют неизменными свои свойства, но могут изменять внешнюю форму или агрегатное состояние.

В химических процессах (химических реакциях) получаются новые вещества с отличными от реагентов свойствами, но никогда не образуются атомы новых элементов. В атомах же участвующих в реакции элементов обязательно происходят видоизменения электронной оболочки.

В ядерных реакциях происходят изменения в атомных ядрах всех участвующих элементов, что приводит к образованию атомов новых элементов.

С помощью химических реакций можно получать практически важные вещества, которые в природе находятся в ограниченных количествах, например азотные удобрения, либо вообще не встречаются по каким-либо причинам, например сульфаниламиды и другие синтетические лекарственные препараты, полиэтилен и другие пластмассы. Химия позволяет синтезировать новые, неизвестные природе вещества, необходимые для жизнедеятельности человека . Вместе с тем, неумелое или безответственное химическое воздействие на окружающую среду и на протекающие природные процессы может привести к нарушению установившихся естественных химических циклов, что делает актуальной экологическую проблему (загрязнение окружающей среды) и усложняет задачу рационального использования природных ресурсов и сохранения естественной среды обитания на Земле .

Литература

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Под влиянием новых требований производства возникло учение о химических процессах, в котором учитывается изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. После этого химия становится наукой уже не только и не столько о веществах как законченных предметах, но и наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила создание производства синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений -- на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы. химический реакция электрон

Так, еще в 1935 г. такие материалы, как кожа, меха, резина, волокна, моющие средства, олифа, лаки, уксусная кислота, этиловый спирт, производились всецело из животного и растительного сырья, в том числе из пищевого. На это расходовались десятки миллионов тонн зерна, картофеля, жиров, сырой кожи и т.д. Но уже в 1960-е гг. 100% технического спирта, 80% моющих средств, 90% олифы и лаков, 40% волокон, 70% каучука и около 25% кожевенных материалов изготовлялись на основе газового и нефтяного сырья. Помимо этого, химия дает ежегодно сотни тысяч тонн мочевины и нефтяного белка в качестве корма скоту и около 200 млн. т удобрений.

Столь впечатляющие успехи были достигнуты на основе учения о химических процессах -- области науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основу данного учения положены химическая термодинамика и кинетика, поэтому этот раздел науки в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов -- лауреат Нобелевской премии, основатель химической физики. Он в своей Нобелевской лекции 1965 г. заявил, что химический процесс -- это то основное явление, которое отличает химию от физики, делает ее более сложной наукой. Химический процесс становится первой ступенью при восхождении от таких относительно простых физических объектов, как электрон, протон, атом, молекула, к сложным, многоуровневым живым системам. Ведь любая клетка живого организма, по существу, представляет собой своеобразный сложный реактор. Поэтому химия становится мостом от объектов физики к объектам биологии.

Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций. Эти условия могут оказывать воздействие на характер и результаты химических реакций.

Подавляющее большинство химических реакций находится во власти стихии. Конечно, есть реакции, которые не требуют особых средств управления или особых условий. Таковы всем известные реакции кислотно-основного взаимодействия (нейтрализации). Однако подавляющее большинство реакций являются трудно контролируемыми. Есть реакции, которые просто не удается осуществить, хотя они в принципе осуществимы. Существуют реакции, которые трудно остановить: горения и взрывы. И, наконец, встречаются реакции, которые трудно ввести в одно желательное русло, так как они самопроизвольно создают десятки непредвиденных ответвлений с образованием сотен побочных продуктов. Поэтому важнейшей задачей для химиков становится умение управлять химическими процессами, добиваясь нужных результатов.

Методы управления химическими процессами

В самом общем виде методы управления химическими процессами можно подразделить на термодинамические и кинетические.

Термодинамические методы влияют на смещение химического равновесия реакции. Кинетические методы влияют на скорость протекания химической реакции.

Выделение химической термодинамики в самостоятельное направление обычно связывают с появлением в 1884 г. книги голландского химика Я. Вант-Гоффа «Очерки по химической динамике». В ней обоснованы законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. Энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии, называются экзотермическими реакциями. В них энергия высвобождается одновременно с уменьшением внутренней энергии системы. Существуют также эндотермические реакции, протекающие с поглощением энергии. В этих реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы.

Тогда же французский химик А. Ле-Шателье сформулировал свой знаменитый принцип подвижного равновесия, вооружив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических методов.

Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий протекания процесса. Существует много реакций, равновесие в которых смещено в сторону образования конечных продуктов: к ним относятся реакция нейтрализации, реакции с удалением готовых продуктов в виде газов или осадков.

Однако существует немало химических реакций, равновесие в которых смещено влево, в сторону образования исходных веществ. Чтобы их осуществить, требуются особые термодинамические рычаги -- увеличение температуры и давления (если реакция происходит в газовой фазе), а также концентрации реагирующих веществ (если реакция протекает в жидкой фазе).

Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость.

Управлением скоростью химических процессов занимается химическая кинетика, в которой изучается зависимость протекания химических процессов от различных структурно-кинетических факторов -- строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т.п. Задача исследования химических реакций является очень сложной. Ведь при ее решении необходимо выяснить механизм взаимодействия не просто двух реагентов, а еще и «третьих тел», которых может быть несколько. В этом случае наиболее целесообразно поэтапное решение, при котором вначале выделяется наиболее сильное действие какого-нибудь одного из «третьих тел», чаще всего катализатора.

Кроме того, следует понять, что практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.

Также на интенсивность химических процессов оказывают влияние случайные примеси. Вещества различной степени чистоты проявляют себя в одних случаях как более активные реагенты, а в других -- как инертные. Примеси могут оказывать как каталитическое, так и ингибирующее воздействие. Поэтому для управления химическим процессом в реагирующие вещества вносятся те или иные добавки.

Таким образом, влияние «третьих тел» на ход химических реакций может быть сведено к катализу, т.е. положительному воздействию на химический процесс, или ингибированию, сдерживающему процесс.

Как уже отмечалось выше, способность химических элементов к взаимосвязи определяется не только их молекулярной структурой, но и условиями, при которых происходит соединение. Эти условия оказывают воздействие на результат химических реакций. Наибольшее воздействие испытывают при этом вещества с переменным составом, у которых связи между отдельными компонентами слабее. Именно на реакцию таких веществ оказывают сильное влияние различные катализаторы.

Катализ -- ускорение химической реакции в присутствии особых веществ -- катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав конечных продуктов. Катализ был открыт в 1812 г. русским химиком К.С. Кирхгофом. Каталитические процессы различаются по своей физической и химической природе на следующие типы:

* гетерогенный катализ -- химическая реакция взаимодействия жидких или газообразных реагентов идет на поверхности твердого катализатора;

* гомогенный катализ -- химическая реакция идет либо в газовой смеси, либо в жидкости, где растворены как катализатор, так и реагенты;

* электрокатализ -- реакция идет на поверхности электрода в контакте с раствором и под действием электрического тока;

* фотокатализ -- реакция идет на поверхности твердого тела или в жидком растворе и стимулируется энергией поглощенного излучения.

Наибольшее распространение имеет гетерогенный катализ, -- с его помощью осуществляется 80% всех каталитических реакций в современной химии.

Применение катализаторов послужило основанием коренной ломки всей химической промышленности. Благодаря им стало возможным использовать в качестве сырья для органического синтеза парафины и циклопарафины, до сих пор считавшиеся «химическими мертвецами». Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (производство неорганических кислот, оснований и солей) и «тяжелого» органического синтеза, включая получение горюче-смазочных материалов, базируется на катализе. Последнее время тонкий органический синтез становится все более каталитическим. 60--80% всей химии основано на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.

Долгое время сам катализ оставался загадкой природы, вызывая к жизни самые разнообразные теории, как чисто химические, так и физические. Эти теории, даже будучи ошибочными, оказывались полезными хотя бы потому, что наталкивали ученых на новые эксперименты. Все дело в том, что для большинства промышленно важных химических процессов катализаторы подбирались путем бесчисленных проб и ошибок. Так, например, для реакции синтеза аммиака в 1913--1914 гг. немецкие химики испробовали в качестве катализаторов более 20 тысяч химических соединений, следуя периодической системе элементов и разнообразно сочетая их.

Сегодня можно сделать некоторые выводы о сущности катализа.

1. Реагирующие вещества вступают в контакт с катализатором, взаимодействуют с ним, в результате чего происходит ослабление химических связей. Если реакция происходит в отсутствие катализатора, то активация молекул реагирующих веществ должна происходить за счет подачи в реактор энергии извне.

2. В общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение ослабленных химических связей.

3. В подавляющем большинстве случаев в качестве катализаторов выступают соединения бертоллидного типа с переменным составом, отличающиеся наличием ослабленных химических связей или даже свободных валентностей, что придает им высокую химическую активность. Молекулы соединений бертоллидного типа содержат широкий набор энергетически неоднородных связей или даже свободные атомы на поверхности.

4. Следствиями взаимодействия реагентов с катализатором являются ход реакции в заданном направлении и увеличение скорости реакции, так как на поверхности катализатора увеличивается число встреч реагирующих молекул. Кроме того, катализатор захватывает некоторую часть энергии экзотермической реакции для энергетической подпитки все новых актов реакции и ее общего ускорения.

На современном этапе своего развития химия открыла множество эффективных катализаторов. Среди них -- ионнообменные смолы, металлорганические соединения, мембранные катализаторы. Каталитическими свойствами обладают многие химические элементы периодической системы, но важнейшую роль играют металлы платиновой группы и редкоземельные металлы.

С участием катализаторов скорость некоторых реакций возрастает в 10 млрд. раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность).

Направление развития учения о химических процессах

В современных условиях одно из важнейших направлений развития учения о химических процессах -- создание методов управления этими процессами, поэтому химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.

Химия плазмы

Химия плазмы изучает химические процессы в низкотемпературной плазме при температурах от 1000 до 10 000°С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями протекания химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока: длительность элементарных актов химических превращений составляет около 10-13 с при почти полном отсутствии обратимости реакции. Скорость аналогичных химических процессов в обычных реакторах из-за обратимости снижается в тысячи раз. Поэтому плазмохимические процессы очень производительны. Например, производительность метанового плазмохимического реактора (его размеры: длина -- 65 см, диаметр -- 15 см) составляет 75 т ацетилена в сутки. В этом реакторе при температуре 3000--3500°С за одну десятитысячную долю секунды около 80% метана превращается в ацетилен.

Плазменная химия в последнее время все больше внедряется в промышленное производство. Уже созданы технологии производства сырья для порошковой металлургии, разработаны методы синтеза для целого ряда химических соединений. В 1970-е гг. были созданы плазменные сталеплавильные печи, позволяющие получать самые высококачественные металлы. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается в несколько раз.

Плазмохимия позволяет синтезировать ранее неизвестные материалы, такие, как металлобетон, в котором в качестве связующего элемента используются различные металлы. Металлобетон образуется при сплавлении частиц горной породы и прочном сжатии их с металлом. По своим качествам он превосходит обычный бетон в десятки и сотни раз.

Радиационная химия

Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.

Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе получение полимербетонов путем пропитки обычного бетона каким-либо полимером с его последующим облучением. Такие бетоны имеют в четыре раза более высокую прочность, обладают водонепроницаемостью и высокой коррозионной стойкостью.

Химия высоких давлений и температур

Принципиально новой и исключительно важной областью учения о химических процессах является само распространяющийся высокотемпературный синтез тугоплавких и керамических материалов. Обычно их производство осуществляется методом порошковой металлургии, суть которого заключается в прессовании и сжатии при высокой температуре (1200--2000°С) металлических порошков. Само распространяющийся синтез происходит гораздо проще: он основан на горении одного металла в другом или горении металла в азоте, углероде, кремнии и т.п.

Давно известно, что процесс горения представляет собой соединение кислорода с горючим веществом, поэтому горение -- это реакция окисления горючего вещества. При этом происходит перемещение электронов от атомов окисляемого вещества к атомам кислорода. С этой точки зрения горение возможно не только в кислороде, но и в других окислителях. На этом выводе и основан само распространяющийся высокотемпературный синтез -- тепловой процесс горения в твердых телах. Он представляет собой, например, горение порошка титана в порошке бора, или порошка циркония в порошке кремния. В результате такого синтеза получаются сотни тугоплавких соединений самого высокого качества.

Очень важно, что данная технология не требует громоздких процессов, отличается высокой технологичностью и легко поддается автоматизации.

Химия высоких давлений

Еще одна область развития учения о химических процессах -- химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм -- к химии сверхвысоких давлений. Высокие давления в химии используются с начала XX в. -- аммиачное производство осуществлялось при давлении 300 атм и температуре 600°С. Но в последнее время используются установки, в которых достигается давление 5000 атм, а испытания проводятся при давлении 600 000 атм, которое достигается за счет ударной волны при взрыве в течение миллионной доли секунды. При ядерных взрывах возникают еще более высокие давления.

При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102--103 атм исчезает различие между жидкой и газовой фазами, а при 103--105 атм -- между твердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства веществ. Например, при давлении 20 000 атм металл становится эластичным, как каучук. Обычная вода при высоких температуре и давлении становится химически активной. С повышением давления многие вещества переходят в металлическое состояние. Так, в 1973 г. ученые наблюдали металлический водород при давлении 2,8 млн. атм.

Одним из важнейших достижений химии сверхвысоких давлений стал синтез алмазов. Он идет при давлении 50 000 атм и температуре 2000°С. При этом графит кристаллизуется в алмазы. Также алмазы можно синтезировать и с применением ударных волн. В последнее время ежегодно производятся тонны синтетических алмазов, которые лишь незначительно отличаются от природных по своим свойствам. Получающиеся алмазы используются для промышленных целей -- в режущем и буровом оборудовании. Удалось синтезировать черные алмазы -- карбонадо, которые тверже природных алмазов. Они используются для обработки самих алмазов.

В настоящее время налажено промышленное производство не только искусственных алмазов, но и других драгоценных камней -- корунда (красного рубина), изумруда и др. При высоких давлениях синтезируют и другие материалы, отличающиеся высокой термостойкостью. Так, из нитрида бора при давлении 100 000 атм и температуре 2000°С синтезирован боразон -- материал, пригодный для сверления и шлифования деталей из чрезвычайно твердых материалов при очень высоких температурах.

Энергетика химических процессов и систем

Химические реакции - взаимодействие между атомами и молекулами, приводящее к образованию новых веществ, отличных от исходных по химическому составу или строению. Химические реакции в отличие от ядерных не изменяют ни общего числа атомов в системе, ни изотопного состава элементов.

Система - совокупность тел, выделенная из пространства. Если в системе возможен массо и теплообмен между всеми ее составными частями, то такая система называется термодинамической. Химическая система, в которой возможно протекание реакций, представляет собой частный случай термодинамической. Если между системой и окружающей средой отсутствует массо и теплообмен, то такая система называется изолированной. Если отсутствует массообмен, но возможен теплообмен, то система называется закрытой. Если же между системой и окружающей средой возможен и массо, и теплообмен, то система открытая. Система, состоящая из нескольких фаз, называется гетерогенной, однофазная система - гомогенной.

Состояние химической системы определяется свойствами: температура, давление, концентрация, объем, энергия.

Реакции, протекающие в гомогенной системе, развиваются во всем ее объеме и называются гомогенными. Реакции, происходящие на границе раздела фаз - гетерогенными.

Для термодинамического описания системы пользуются так называемыми функциями состояния системы - это любая физическая величина, значения которой однозначно определяются термодинамическими свойствами системы. К важнейшим функциям состояния системы относятся:

Полная энергия системы (Е);

Внутренняя энергия системы (U);

Энтальпия (или теплосодержание) - это мера энергии, накапливаемая веществом при его образовании (Н):

Энтропия - мера неупорядоченности системы (S);

Энергия Гиббса - мера устойчивости системы при постоянном давлении (G):

Энергия Гельмгольца - мера устойчивости системы при постоянном объеме (F):

Судить о возможности самопроизвольного протекания процесса можно по знаку изменения функции свободной энергии Гиббса: если?G < 0, т.е. в процессе взаимодействия происходит уменьшение свободной энергии, то процесс термодинамически возможен. Если?G > 0, то протекание процесса невозможно. Таким образом, все процессы могут самопроизвольно протекать в сторону уменьшения свободной энергии.

Химическое взаимодействие, как правило, сопровождается тепловым эффектом. Процессы, протекающие с выделением теплоты, называются экзотермическими (?Н < 0), а идущие с поглощением теплоты - эндотермическими (?Н > 0).

Тепловой эффект химических процессов в изобарных условиях определяется изменением энтальпии, т.е. разницей энтальпий конечного и исходного состояний. Согласно, закону Лавуазье-Лапласа: теплота, выделяющаяся при образовании вещества, равна теплоте, поглощаемой при разложении такого же его количества на исходные составные части.

Более глубокие обобщения термохимических закономерностей дает закон Гесса: тепловой эффект химических реакций, протекающих или при постоянном давлении, или при постоянном объеме, не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным состояниями системы.

I закон термодинамики (закон сохранения энергии) - энергия не исчезает и не возникает вновь из ничего при протекании процесса, она лишь может переходить из одной формы в другую в строго эквивалентных отношениях.

II закон термодинамики - при протекании процесса в изолированной системе обратимых процессов энтропия остается неизменной, а при необратимых процессах увеличивается. .

Заключение

Химия - наука социальная. Её высшая цель - удовлетворять нужды каждого человека и всего общества. Многие надежды человечества обращены к химии. Молекулярная биология, генная инженерия и биотехнология, наука о материалах являются фундаментально химическими науками. Прогресс медицины и охраны здоровья - это проблемы химии болезней, лекарств, пищи; нейрофизиология и работа мозга - это, прежде всего нейрохимия, химия, химия памяти. Человечество ждёт от химии новых материалов с магическими свойствами, новых источников и аккумуляторов энергии, новых чистых и безопасных технологий, и т.д.

Как фундаментальная наука химия сформировалась в начале XX века, вместе с новой, квантовой механикой. И это бесспорная истина, потому что все объекты химии - атомы, молекулы, ионы, и т.д. - являются квантовыми объектами. Главные события в химии - химические реакции и химические процессы т.е. перегруппировка атомных ядер и преобразование электронных оболочек, электронных одежд молекул-реагентов в молекулы продуктов - также является квантовым событием.

Необходимость химических процессов возникает под влиянием новых требований производства. Способы решения основной проблемы химии основанной на учении о составе и структурных теориях изученных ранее, был явно не достаточен тут и возникает новый уровень - уровень химических знаний - знаний о химических процессах. Химия становится наукой уже не только и не столько веществах, как законченных предметах, но наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила производство синтетических материалов.

В современном обществе учения о химических процессах необходимые знания, так как науке нужно развиваться и стремиться к новым открытиям, а этому может способствовать только человек.

Список использованной литературы

1. Бочкарёв А. И. - Концепции современного естествознания: учебник для студентов вузов А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов; под ред. проф. А. И. Бочкарёва. - Тольятти: ТГУС, 2008. - 386 с. [электронный ресурс]www.tolgas.ru (дата обращения 14.11.2102)

2. Садохин А.П. Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. -- 2-е изд., перераб. и доп. -- М.: ЮНИТИ-ДАНА, 2006. - 447 с.[электронный ресурс] http://www.twirpx.com/file/20132/ (дата обращения: 10.12.2102)

Размещено на Allbest.ru

...

Подобные документы

    Определение биосферы, ее эволюция, границы и состав, охрана. Свойства живого вещества. Биогенная миграция атомов. Биомасса, её распределение на планете. Роль растений, животных и микроорганизмов в круговороте веществ. Биосфера и превращение энергии.

    контрольная работа , добавлен 15.09.2013

    Порядок, беспорядок в природе, особенности теплового движения как пример хаотического, неорганизованного порядка. Феномен процесса рассеяния энергии. Химические процессы и свойства веществ. Качество тел в ракете в условиях высокой скорости движения.

    курсовая работа , добавлен 11.03.2010

    Исследование теории самоорганизации. Основной критерий рaзвития сaмооргaнизующихся систем. Неравновесные процессы и открытые системы. Самоорганизация диссипативных структур. Химическая реакция Белоусова-Жаботинского. Самоорганизация в физических явлениях.

    реферат , добавлен 30.09.2010

    Вивчення будови ядра як одного із структурних елементів еукаріотічеськой клітки, що містить генетичну інформацію в молекулах ДНК. Ядерна оболонка, ядерце, матрикс як структурні елементи ядра. Характеристика процесів реплікації і транскрипції молекул.

    презентация , добавлен 08.01.2012

    Анализ механизмов прохождения веществ через клеточную мембрану. Основные процессы, с помощью которых вещества проникают через мембрану. Свойства простой и облегченной диффузии. Типы активного транспорта. Ионные каналы, их отличие от поры, градиент.

    презентация , добавлен 06.11.2014

    Превращение азотистых веществ в растениях. Качество растительных масел в зависимости от факторов внешней среды. Превращение веществ при созревании семян масленичных культур. Яровизация, ее суть и значение. Влияние температуры и света на покой семян.

    контрольная работа , добавлен 05.09.2011

    Анализ возможных путей расщепления глюкозы. Определение составляющих и принципа функционирования аэробного метаболизма. Процессы образования органических кислот и биотрансформации исходных субстратов, отличных от углеводов по своей химической природе.

    реферат , добавлен 09.06.2015

    Потоки вещества, энергии и деструкционные блоки в экосистемах. Проблемы биологической продуктивности. Пирамиды чисел, биомасс и энергии. Процессы трансформации вещества и энергии между биотой и физической средой. Биохимический круговорот веществ.

    реферат , добавлен 26.06.2010

    Закон тяготения Ньютона. Специальная теория относительности. Второе начало термодинамики. Представления о строении атомов. Методы химической кинетики. Понятия равновесия, равновесного излучения. Реакции синтеза ядер. Особенности биотического круговорота.

    контрольная работа , добавлен 16.04.2011

    Описание основных функций, выполняемых процессами выделения веществ у растений. Понятие аллелопатии, экскреции и секреции. Функции специализированных секреторных структур у растений. Группы эпидермальных образований, участвующих в выделении веществ.